示例#1
0
    def __init__(self, mesh_el_group, order, index, *, unit_nodes):
        basis = mp.orthonormal_basis_for_space(mp.QN(mesh_el_group.dim, order),
                                               mp.Hypercube(mesh_el_group.dim))

        super().__init__(mesh_el_group,
                         order,
                         index,
                         basis=basis,
                         unit_nodes=unit_nodes)
示例#2
0
def test_hypercube_submesh(dims, order=3):
    shape = mp.Hypercube(dims)
    space = mp.space_for_shape(shape, order)

    node_tuples = mp.node_tuples_for_space(space)
    for i, nt in enumerate(node_tuples):
        logger.info("[%4d] nodes %s", i, nt)

    assert len(node_tuples) == (order + 1)**dims

    elements = mp.submesh_for_shape(shape, node_tuples)

    for e in elements:
        logger.info("element: %s", e)

    assert len(elements) == order**dims
示例#3
0

@pytest.mark.parametrize(
    ("order", "ebound"),
    [
        (1, 2e-15),
        (2, 5e-15),
        (3, 1e-14),
        # (4, 3e-14),
        # (7, 3e-14),
        # (9, 2e-13),
    ])
@pytest.mark.parametrize("shape", [
    mp.Simplex(2),
    mp.Simplex(3),
    mp.Hypercube(2),
    mp.Hypercube(3),
])
def test_orthogonality(shape, order, ebound):
    """Test orthogonality of ONBs using cubature."""

    qspace = mp.space_for_shape(shape, 2 * order)
    cub = mp.quadrature_for_space(qspace, shape)
    basis = mp.orthonormal_basis_for_space(mp.space_for_shape(shape, order),
                                           shape)

    maxerr = 0
    for i, f in enumerate(basis.functions):
        for j, g in enumerate(basis.functions):
            if i == j:
                true_result = 1
示例#4
0
def make_group_from_vertices(vertices,
                             vertex_indices,
                             order,
                             group_cls=None,
                             unit_nodes=None):
    # shape: (ambient_dim, nelements, nvertices)
    ambient_dim = vertices.shape[0]
    el_vertices = vertices[:, vertex_indices]

    from meshmode.mesh import SimplexElementGroup, TensorProductElementGroup
    if group_cls is None:
        group_cls = SimplexElementGroup

    if issubclass(group_cls, SimplexElementGroup):
        if order < 1:
            raise ValueError("can't represent simplices with mesh order < 1")

        el_origins = el_vertices[:, :, 0][:, :, np.newaxis]
        # ambient_dim, nelements, nspan_vectors
        spanning_vectors = (el_vertices[:, :, 1:] - el_origins)

        nspan_vectors = spanning_vectors.shape[-1]
        dim = nspan_vectors

        # dim, nunit_nodes
        if unit_nodes is None:
            shape = mp.Simplex(dim)
            space = mp.space_for_shape(shape, order)
            unit_nodes = mp.edge_clustered_nodes_for_space(space, shape)

        unit_nodes_01 = 0.5 + 0.5 * unit_nodes
        nodes = np.einsum("si,des->dei", unit_nodes_01,
                          spanning_vectors) + el_origins

    elif issubclass(group_cls, TensorProductElementGroup):
        nelements, nvertices = vertex_indices.shape

        dim = nvertices.bit_length() - 1
        if nvertices != 2**dim:
            raise ValueError("invalid number of vertices for tensor-product "
                             "elements, must be power of two")

        shape = mp.Hypercube(dim)
        space = mp.space_for_shape(shape, order)

        if unit_nodes is None:
            unit_nodes = mp.edge_clustered_nodes_for_space(space, shape)

        # shape: (dim, nnodes)
        unit_nodes_01 = 0.5 + 0.5 * unit_nodes
        _, nnodes = unit_nodes.shape

        vertex_tuples = mp.node_tuples_for_space(type(space)(dim, 1))
        assert len(vertex_tuples) == nvertices

        vdm = np.empty((nvertices, nvertices))
        for i, vertex_tuple in enumerate(vertex_tuples):
            for j, func_tuple in enumerate(vertex_tuples):
                vertex_ref = np.array(vertex_tuple, dtype=np.float64)
                vdm[i, j] = np.prod(vertex_ref**func_tuple)

        # shape: (ambient_dim, nelements, nvertices)
        coeffs = np.empty((ambient_dim, nelements, nvertices))
        for d in range(ambient_dim):
            coeffs[d] = la.solve(vdm, el_vertices[d].T).T

        vdm_nodes = np.zeros((nnodes, nvertices))
        for j, func_tuple in enumerate(vertex_tuples):
            vdm_nodes[:,
                      j] = np.prod(unit_nodes_01**np.array(func_tuple).reshape(
                          -1, 1),
                                   axis=0)

        nodes = np.einsum("ij,dej->dei", vdm_nodes, coeffs)
    else:
        raise ValueError(f"unsupported value for 'group_cls': {group_cls}")

    # make contiguous
    nodes = nodes.copy()

    return group_cls(order, vertex_indices, nodes, unit_nodes=unit_nodes)
示例#5
0
    def get_mesh(self):
        el_type_hist = {}
        for el_type in self.element_types:
            el_type_hist[el_type] = el_type_hist.get(el_type, 0) + 1

        if not el_type_hist:
            raise RuntimeError("empty mesh in gmsh input")

        groups = self.groups = []
        ambient_dim = self.points.shape[-1]

        mesh_bulk_dim = max(el_type.dimensions for el_type in el_type_hist)

        # {{{ build vertex numbering

        # map set of face vertex indices to list of tags associated to face
        face_vertex_indices_to_tags = {}
        vertex_gmsh_index_to_mine = {}
        for element, el_vertices in enumerate(self.element_vertices):
            for gmsh_vertex_nr in el_vertices:
                if gmsh_vertex_nr not in vertex_gmsh_index_to_mine:
                    vertex_gmsh_index_to_mine[gmsh_vertex_nr] = \
                            len(vertex_gmsh_index_to_mine)
            if self.tags:
                el_tag_indexes = [self.gmsh_tag_index_to_mine[t] for t in
                                  self.element_markers[element]]
                # record tags of boundary dimension
                el_tags = [self.tags[i][0] for i in el_tag_indexes if
                           self.tags[i][1] == mesh_bulk_dim - 1]
                el_grp_verts = {vertex_gmsh_index_to_mine[e] for e in el_vertices}
                face_vertex_indices = frozenset(el_grp_verts)
                if face_vertex_indices not in face_vertex_indices_to_tags:
                    face_vertex_indices_to_tags[face_vertex_indices] = []
                face_vertex_indices_to_tags[face_vertex_indices] += el_tags

        # }}}

        # {{{ build vertex array

        gmsh_vertex_indices, my_vertex_indices = \
                list(zip(*vertex_gmsh_index_to_mine.items()))
        vertices = np.empty(
                (ambient_dim, len(vertex_gmsh_index_to_mine)), dtype=np.float64)
        vertices[:, np.array(my_vertex_indices, np.intp)] = \
                self.points[np.array(gmsh_vertex_indices, np.intp)].T

        # }}}

        from meshmode.mesh import (Mesh,
                SimplexElementGroup, TensorProductElementGroup)

        bulk_el_types = set()

        for group_el_type, ngroup_elements in el_type_hist.items():
            if group_el_type.dimensions != mesh_bulk_dim:
                continue

            bulk_el_types.add(group_el_type)

            nodes = np.empty(
                    (ambient_dim, ngroup_elements, group_el_type.node_count()),
                    np.float64)
            el_vertex_count = group_el_type.vertex_count()
            vertex_indices = np.empty(
                    (ngroup_elements, el_vertex_count),
                    np.int32)
            i = 0

            for el_vertices, el_nodes, el_type in zip(
                    self.element_vertices, self.element_nodes, self.element_types):
                if el_type is not group_el_type:
                    continue

                nodes[:, i] = self.points[el_nodes].T
                vertex_indices[i] = [
                        vertex_gmsh_index_to_mine[v_nr] for v_nr in el_vertices
                        ]

                i += 1

            import modepy as mp
            if isinstance(group_el_type, GmshSimplexElementBase):
                shape = mp.Simplex(group_el_type.dimensions)
            elif isinstance(group_el_type, GmshTensorProductElementBase):
                shape = mp.Hypercube(group_el_type.dimensions)
            else:
                raise NotImplementedError(
                        f"gmsh element type: {type(group_el_type).__name__}")

            space = mp.space_for_shape(shape, group_el_type.order)
            unit_nodes = mp.equispaced_nodes_for_space(space, shape)

            if isinstance(group_el_type, GmshSimplexElementBase):
                group = SimplexElementGroup(
                    group_el_type.order,
                    vertex_indices,
                    nodes,
                    unit_nodes=unit_nodes
                    )

                if group.dim == 2:
                    from meshmode.mesh.processing import flip_simplex_element_group
                    group = flip_simplex_element_group(vertices, group,
                            np.ones(ngroup_elements, bool))

            elif isinstance(group_el_type, GmshTensorProductElementBase):
                vertex_shuffle = type(group_el_type)(
                        order=1).get_lexicographic_gmsh_node_indices()

                group = TensorProductElementGroup(
                    group_el_type.order,
                    vertex_indices[:, vertex_shuffle],
                    nodes,
                    unit_nodes=unit_nodes
                    )
            else:
                # NOTE: already checked above
                raise AssertionError()

            groups.append(group)

        # FIXME: This is heuristic.
        if len(bulk_el_types) == 1:
            is_conforming = True
        else:
            is_conforming = mesh_bulk_dim < 3

        # construct boundary tags for mesh
        from meshmode.mesh import BTAG_ALL, BTAG_REALLY_ALL
        boundary_tags = [BTAG_ALL, BTAG_REALLY_ALL]
        if self.tags:
            boundary_tags += [tag for tag, dim in self.tags if
                              dim == mesh_bulk_dim-1]

        # compute facial adjacency for Mesh if there is tag information
        facial_adjacency_groups = None
        if is_conforming and self.tags:
            from meshmode.mesh import _compute_facial_adjacency_from_vertices
            facial_adjacency_groups = _compute_facial_adjacency_from_vertices(
                    groups, boundary_tags, np.int32, np.int8,
                    face_vertex_indices_to_tags)

        return Mesh(
                vertices, groups,
                is_conforming=is_conforming,
                facial_adjacency_groups=facial_adjacency_groups,
                boundary_tags=boundary_tags,
                **self.mesh_construction_kwargs)
示例#6
0
 def shape(self):
     return mp.Hypercube(self.dim)