示例#1
0
    def __init__(self, RedDataFilesList, **kargs):

        if kargs.has_key('num_modes'):
            self.num_modes = kargs['num_modes']
        else:
            self.num_modes = len(RedDataFilesList)
        Nvars = len(RedDataFilesList[0].data[0, 2:])
        N = RedDataFilesList[0].params['N']
        podInput = np.array([
            rr.data[:, 2:].reshape(rr.params['N'] * len(rr.data[0, 2:]))
            for rr in RedDataFilesList
        ])
        modes, self.eig_vals = MR.compute_POD_matrices_snaps_method(
            podInput.T, range(self.num_modes))

        self.modes = list()

        for m in modes.T:
            self.modes.append(m.reshape((N, Nvars)))

        self.baseRedFile = RedDataFilesList[0].copyForWriting()
        print self.baseRedFile.data.shape
        print RedDataFilesList[0].data.shape

        for v in RedDataFilesList[0].variables[2:]:
            self.baseRedFile.appendVariable(v + '_mode')
示例#2
0
def ro0_POD_base(rigid, deformable, num_modes=11, verbose=False):

    if modred.__version__[0] != '1':
        print 'modred version 1 is needed!'
        import sys
        sys.exit(1)

    vecs = numpy.transpose(numpy.array(rigid + deformable))

    if verbose:
        svec = vecs.shape[0]
        nvec = vecs.shape[1]
        print 'Calculating', num_modes, 'POD modes for', nvec, 'input vectors of size', svec, '...'

    modes, eig_vals = modred.compute_POD_matrices_snaps_method(
        vecs, list(range(num_modes)))
    #modes, eig_vals = modred.compute_POD_matrices_direct_method(vecs, list(range(num_modes)))

    if verbose:
        print 'POD eigen values:'
        print eig_vals[0:num_modes]

    mod = numpy.transpose(modes).tolist()
    base = [x for vec in mod for x in vec]
    val = eig_vals.tolist()

    return (val[0:len(mod)], base)
示例#3
0
def ro0_POD_base(rigid, deformable, num_modes=11, verbose=False):

  if modred.__version__[0] != '1':
    print 'modred version 1 is needed!'
    import sys
    sys.exit(1)

  vecs = numpy.transpose(numpy.array(rigid+deformable))

  if verbose:
    svec = vecs.shape[0]
    nvec = vecs.shape[1]
    print 'Calculating', num_modes, 'POD modes for', nvec, 'input vectors of size', svec, '...'

  modes, eig_vals = modred.compute_POD_matrices_snaps_method(vecs, list(range(num_modes)))
  #modes, eig_vals = modred.compute_POD_matrices_direct_method(vecs, list(range(num_modes)))

  if verbose:
    print 'POD eigen values:'
    print eig_vals[0:num_modes]

  mod = numpy.transpose(modes).tolist()
  base = [x for vec in mod for x in vec]
  val = eig_vals.tolist()

  return (val[0:len(mod)], base)
def calculate_pod(saved_modes_number):
    with open('data_loaded.txt') as file:
        data = np.loadtxt(file)
        data_accumulate = data - data.mean(axis=1, keepdims=True)
    modes, eigen_values = mr.compute_POD_matrices_snaps_method(
        data_accumulate, list(range(saved_modes_number)))
    np.savetxt('modes.txt', modes)
    np.savetxt('eigen_values.txt', eigen_values)
示例#5
0
def ro0_POD_base_keep_rigid(rigid, deformable, num_modes=11, verbose=False):

    vecs = numpy.transpose(numpy.array(deformable))

    if verbose:
        svec = vecs.shape[0]
        nvec = vecs.shape[1]
        print 'Calculating', num_modes - 6, 'POD modes for', nvec, 'input vectors of size', svec, '...'

    modes, eig_vals = modred.compute_POD_matrices_snaps_method(
        vecs, list(range(num_modes - 6)))
    #modes, eig_vals = modred.compute_POD_matrices_direct_method(vecs, list(range(num_modes-6)))

    if verbose:
        print 'POD eigen values:'
        print eig_vals[0:num_modes - 6]

    defo = numpy.transpose(modes).tolist()

    # re-orthogonalize deformable modes with
    # respect to the 6 rigid modes and themselves
    for i in range(0, len(defo)):
        for j in range(0, i):  # defo(i) _|_ defo(j<i)
            x = defo[i]
            y = defo[j]
            dot = numpy.dot(x, y)
            z = numpy.array(x) - dot * numpy.array(y)
            defo[i] = z.tolist()
        for y in rigid:  # defo(i) _|_ rigid
            x = defo[i]
            dot = numpy.dot(x, y)
            z = numpy.array(x) - dot * numpy.array(y)
            defo[i] = z.tolist()
        # normalize
        x = defo[i]
        invlen = 1.0 / numpy.dot(x, x)**0.5
        z = numpy.array(x) * invlen
        defo[i] = z.tolist()
    '''
  for i in range(0,len(defo)):
    for j in range(0,len(defo)):
      x = defo[i]
      y = defo[j]
      dot = numpy.dot(x, y)
      print 'dot(%d,%d) = %g' % (i, j, dot)
    for y in rigid:
      x = defo[i]
      dot = numpy.dot(x, y)
      print 'dot(%d,rigid) = %g' % (i, dot)
   '''

    base = [x for vec in (rigid + defo) for x in vec]
    val = eig_vals.tolist()

    return ([0.] * 6 + [1.] * (num_modes - 6), base)
示例#6
0
def ro0_POD_base_keep_rigid(rigid, deformable, num_modes=11, verbose=False):

  vecs = numpy.transpose(numpy.array(deformable))

  if verbose:
    svec = vecs.shape[0]
    nvec = vecs.shape[1]
    print 'Calculating', num_modes-6, 'POD modes for', nvec, 'input vectors of size', svec, '...'

  modes, eig_vals = modred.compute_POD_matrices_snaps_method(vecs, list(range(num_modes-6)))
  #modes, eig_vals = modred.compute_POD_matrices_direct_method(vecs, list(range(num_modes-6)))

  if verbose:
    print 'POD eigen values:'
    print eig_vals[0:num_modes-6]

  defo = numpy.transpose(modes).tolist()

  # re-orthogonalize deformable modes with
  # respect to the 6 rigid modes and themselves
  for i in range(0,len(defo)):
    for j in range(0, i): # defo(i) _|_ defo(j<i)
      x = defo[i]
      y = defo[j]
      dot = numpy.dot(x, y)
      z = numpy.array(x) - dot*numpy.array(y)
      defo[i] = z.tolist()
    for y in rigid: # defo(i) _|_ rigid
      x = defo[i]
      dot = numpy.dot(x, y)
      z = numpy.array(x) - dot*numpy.array(y)
      defo[i] = z.tolist()
    # normalize
    x = defo[i]
    invlen = 1.0/numpy.dot(x, x)**0.5
    z = numpy.array(x) * invlen
    defo[i] = z.tolist()

  '''
  for i in range(0,len(defo)):
    for j in range(0,len(defo)):
      x = defo[i]
      y = defo[j]
      dot = numpy.dot(x, y)
      print 'dot(%d,%d) = %g' % (i, j, dot)
    for y in rigid:
      x = defo[i]
      dot = numpy.dot(x, y)
      print 'dot(%d,rigid) = %g' % (i, dot)
   '''

  base = [x for vec in (rigid+defo) for x in vec]
  val = eig_vals.tolist()

  return ([0.]*6+[1.]*(num_modes-6), base)
示例#7
0
    def decompose(self, nMode, method='snap', subtractMean=False):
        '''
        Compute the Porper Orthogonal Decomposition (POD) from a list of N snapshots. 
        The snapshots are PIV surfaces of size (surfX,surfY) of field F. F can be any
        scalar field (Ux, ux, T, vorticity, R11,...)
        
        Arguments:

            
            *nMode*: python integer.
             Number of modes of the POD.
            
            *PODmethod*: python string. Default='snap'
             Type of POD algorithm used. For the snapshot method, use PODmethod='snap' and
             for the direct method, use PODmewthod='direct'. The default value is 'snap'.
             
             How to choose between 'snap' and 'direct': if surfX*surfY > N**2, use the snap
             method, it should increase the coputational speed for only a little loss in 
             precision.
             
        Returns:
            None
        
        '''
        nSnap = self.vecs.shape[1]

        self.result['nMode'] = nMode
        self.result['nSnap'] = nSnap

        if np.any(self.vecs):
            self.vecs = np.nan_to_num(self.vecs)

        if subtractMean:
            self.vecs = self.vecs - np.mean(self.vecs, axis=1, keepdims=True)

        if method == 'snap':
            modesPOD, eigVals = modred.compute_POD_matrices_snaps_method(
                self.vecs, range(nMode))
        elif method == 'direct':
            modesPOD, eigVals = modred.compute_POD_matrices_direct_method(
                self.vecs, range(nMode))
        else:
            print('error: argument ' + str(method) +
                  ' is not valid. Use \'snap\' or \'direct\'')

        # convert modesPOD in an numpy array
        modesPOD = np.asarray(modesPOD)
        self.result['raw_modes'] = modesPOD
        self.result['eigVals'] = eigVals

        ai = self.projectOnMode(self.vecs)
        self.result['ai'] = ai
    def decompose(self,nMode,method='snap',subtractMean=False):
        '''
        Compute the Porper Orthogonal Decomposition (POD) from a list of N snapshots. 
        The snapshots are PIV surfaces of size (surfX,surfY) of field F. F can be any
        scalar field (Ux, ux, T, vorticity, R11,...)
        
        Arguments:

            
            *nMode*: python integer.
             Number of modes of the POD.
            
            *PODmethod*: python string. Default='snap'
             Type of POD algorithm used. For the snapshot method, use PODmethod='snap' and
             for the direct method, use PODmewthod='direct'. The default value is 'snap'.
             
             How to choose between 'snap' and 'direct': if surfX*surfY > N**2, use the snap
             method, it should increase the coputational speed for only a little loss in 
             precision.
             
        Returns:
            None
        
        '''
        nSnap = self.vecs.shape[1]
        
        self.result['nMode']=nMode
        self.result['nSnap']=nSnap
        
        if np.any(self.vecs):
            self.vecs = np.nan_to_num(self.vecs)
        
        if subtractMean:
            self.vecs=self.vecs-np.mean(self.vecs,axis=1,keepdims=True)
        
        if method=='snap':
            modesPOD, eigVals = modred.compute_POD_matrices_snaps_method(self.vecs, range(nMode))
        elif method=='direct':
            modesPOD, eigVals = modred.compute_POD_matrices_direct_method(self.vecs, range(nMode))
        else:
            print('error: argument '+str(method)+' is not valid. Use \'snap\' or \'direct\'')
        
        # convert modesPOD in an numpy array
        modesPOD = np.asarray(modesPOD)
        self.result['raw_modes']=modesPOD
        self.result['eigVals']=eigVals
        
        ai=self.projectOnMode(self.vecs)
        self.result['ai']=ai
示例#9
0
def compare_modred_sparse():
    """Compare output from modred with our sparse method."""
    import modred as mr
    import gc_turbulence as g

    run = g.ProcessedRun(g.default_processed + 'r13_12_16a.hdf5')
    # slice with no nans
    # ( or use # complement(find_nan_slice(run.Uf_[:])) )
    good_slice = (slice(None), slice(None), slice(46L, None))
    data = run.Uf_[good_slice]

    snapshots = sparse_dmd.SparseDMD.to_snaps(data, decomp_axis=1)

    modes, ritz_values, norms \
        = mr.compute_DMD_matrices_snaps_method(snapshots, slice(None))

    pmodes, pnorms \
        = mr.compute_POD_matrices_snaps_method(snapshots, slice(None))

    dmd = sparse_dmd.SparseDMD(snapshots)
示例#10
0
def compare_modred_sparse():
    """Compare output from modred with our sparse method."""
    import modred as mr
    import gc_turbulence as g

    run = g.ProcessedRun(g.default_processed + 'r13_12_16a.hdf5')
    # slice with no nans
    # ( or use # complement(find_nan_slice(run.Uf_[:])) )
    good_slice = (slice(None), slice(None), slice(46L, None))
    data = run.Uf_[good_slice]

    snapshots = sparse_dmd.SparseDMD.to_snaps(data, decomp_axis=1)

    modes, ritz_values, norms \
        = mr.compute_DMD_matrices_snaps_method(snapshots, slice(None))

    pmodes, pnorms \
        = mr.compute_POD_matrices_snaps_method(snapshots, slice(None))

    dmd = sparse_dmd.SparseDMD(snapshots)
示例#11
0
 def __init__(self, RedDataFilesList, **kargs):
     
     if kargs.has_key('num_modes'):
         self.num_modes = kargs['num_modes']
     else:
         self.num_modes = len(RedDataFilesList)
     Nvars = len(RedDataFilesList[0].data[0,2:])
     N = RedDataFilesList[0].params['N']
     podInput = np.array([ rr.data[:,2:].reshape(rr.params['N']*len(rr.data[0,2:])) for rr in RedDataFilesList ])
     modes, self.eig_vals = MR.compute_POD_matrices_snaps_method(podInput.T, range(self.num_modes))
     
     self.modes = list()
 
     for m in modes.T:
         self.modes.append( m.reshape((N,Nvars))  )
     
     self.baseRedFile = RedDataFilesList[0].copyForWriting()
     print self.baseRedFile.data.shape
     print RedDataFilesList[0].data.shape       
     
     for v in RedDataFilesList[0].variables[2:]:
         self.baseRedFile.appendVariable(v+'_mode')
示例#12
0
datarray = np.array([data(np.random.random(4)) for i in range(nr_data)])
true_vx = np.array([0.45, 0.55, 0.75, 0.35])
datb_true = data(true_vx)
datb = datb_true.copy()
datb[30:70] *= np.NaN
#
#
# plot the data (snapshots in black and missing in red)
pl.figure(1)
pl.plot(datarray.T, 'k', alpha=0.5)
pl.plot(datb, 'r', lw=3)
pl.title('Data snapshots used (black) and gappy data (red)')
#
#
# decompose datarray using the method of snapshots
modes, eig_vals, eig_vecs = mr.compute_POD_matrices_snaps_method(
    datarray.T, range(nr_reconstr), return_all=True)[:3]
# modes used for reconstruction
scaled_modes = modes.copy()
for i in range(nr_reconstr):
    scaled_modes[:, i] *= np.sqrt(eig_vals[i])
# plot the scaled modes used in reconstruction:
pl.figure(2)
for i in range(nr_reconstr):
    pl.plot(scaled_modes[:, i], label='Mode %i' % (i + 1))
pl.legend()
pl.title('Scaled (proper orthogonal) modes')
#
#
#
#  used masked modes in reconstruction:
mask = np.where(np.isfinite(datb))[0]
示例#13
0
import numpy as N
import modred as MR

num_vecs = 30
# Arbitrary data
vecs = N.random.random((100, num_vecs))
num_modes = 5
modes, eig_vals = MR.compute_POD_matrices_snaps_method(vecs, range(num_modes))
示例#14
0
from future.builtins import range
import numpy as np
import modred as mr

num_vecs = 30
# Arbitrary data
vecs = np.random.random((100, num_vecs))
num_modes = 5
modes, eig_vals = mr.compute_POD_matrices_snaps_method(vecs, list(range(num_modes)))
示例#15
0
def main(argv):
    import vtk
    from vtk.numpy_interface import dataset_adapter as dsa
    from vtk.numpy_interface import algorithms as algs 
    import numpy as np
    ### get parameters
    
    import os
    if not os.path.exists(OD):
        os.makedirs(OD)
    print '!!!Output to DIR: ',OD    

    if not read_fields_from_file:    

        ### Readin stage
        # using parallel openfoam reader
        ofr = vtk.vtkPOpenFOAMReader()
        # set reader's options 
        ofr.SetFileName(ID+IF)
	print '!!!open file: ',ID+IF
        ofr.SetDecomposePolyhedra(0)
        ofr.CacheMeshOn()
        ofr.SetCreateCellToPoint(0)
        ofr.DisableAllCellArrays()
        ofr.SetCellArrayStatus(fieldname,1)
        ofr.Update()

        # VTKArray is same as numpy array
        times = dsa.vtkDataArrayToVTKArray( ofr.GetTimeValues() ,ofr)
        # select the timestep between t0 and tf
        times = [t for t in times if t>=t0 and t<=tf]
	print '!!!available time steps: ',times
        N = len(times)
        np.save(times_filename,times)

        # using CellQuality to get cell's volumes as weight
        cq = vtk.vtkCellQuality()
        cq.SetInputConnection(0,ofr.GetOutputPort(0))
        cq.SetQualityMeasureToVolume()
        cq.Update()
        # cq is a composite dataset so I need GetBlock(0)
        geom = cq.GetOutputDataObject(0).GetBlock(0)

        # get volumes of cells V, size = L (number of cells)
        V = np.copy(dsa.WrapDataObject(geom).CellData['CellQuality'])
        # normalize it as weight 
        Vtotal = sum(V)
        V /= Vtotal
        
        # delete all other CellDataArray in geom DataSet, preserve its mesh structure and topology structure
        for i in range(geom.GetCellData().GetNumberOfArrays()):
            geom.GetCellData().RemoveArray(0)
        # add volume weight to it for saving
        geom.GetCellData().AddArray(dsa.numpyTovtkDataArray(V,'vol_weight'))

        # using *.vtu file format to save the vol_weight
        ugw = vtk.vtkXMLUnstructuredGridWriter()
        ugw.SetInputDataObject(geom)
        print '!!!Output vol_weight to file: ',geom_filename
        ugw.SetFileName(geom_filename)
        # using binary format
        ugw.SetDataModeToBinary()
        # enable compression
        ugw.SetCompressorTypeToZLib()
        # write to the file
        ugw.Write()
        # disconnect cq and ofr in order to isolate this dataset object from Update()
        cq.RemoveAllInputConnections(0)

        L = V.size # number of cells
        N = len(times) #number of timesteps
        # vector data is larger in size
        if field_is_vector == True:
            fields = np.zeros([N,L,3])
        else:
            fields = np.zeros([N,L])
        pipepout = ofr
        for i in range(N):
            t = times[i]
            print '!!!reading time:{}'.format(t)
            # set time value
            pipepout.GetOutputInformation(0).Set(vtk.vtkStreamingDemandDrivenPipeline.UPDATE_TIME_STEP(),t)
            # read in field data of new timestep
            pipepout.Update()
            # 
            d = dsa.WrapDataObject(pipepout.GetOutput().GetBlock(0))
            print '!!!reading field:{}'.format(fieldname)
            field = d.CellData[fieldname]
            # get the first component of composite dataset, it is the internalField
            fields[i]=np.copy(field)

        # write data to file
        print '!!!write field data to file:',fields_filename
        np.savez(fields_filename,fields)
    else: #read fields from file
        fields = np.load(fields_filename)['arr_0']
        
        ugr = vtk.vtkXMLUnstructuredGridReader()
        ugr.SetFileName(geom_filename)
        ugr.Update()
        geom = ugr.GetOutputDataObject(0)
        V = np.copy(dsa.WrapDataObject(geom).CellData['vol_weight'])
        
        times = np.load(times_filename)
        assert times.shape[0] == fields.shape[0]
        assert fields.shape[1] == V.shape[0]
        N = times.shape[0] 
        L = fields.shape[1]

        print 'Read in dataset complete'
    ### POD section


    # calculate average
    field_avg = np.average(fields, axis=0)
    if subtractAvg:
        fields = fields - field_avg

    import modred as mr
    
    if do_POD:
        # if field is a vector, reshape the fields and corresponding volument weight
        if field_is_vector:
            shp_vec = fields.shape
            shp_flat = (fields.shape[0],fields.shape[1]*fields.shape[2])
            fields = fields.reshape(shp_flat)
            V = np.tile(V,shp_vec[2])

        # POD
        print '!!!Doing POD analysis'
        modes, eigen_vals, eigen_vecs, correlation_mat = mr.compute_POD_matrices_snaps_method(fields.T,range(M),inner_product_weights=V,return_all=True)

        # if field is a vector, reshape the output matrix
        if field_is_vector:
            fields = fields.reshape(shp_vec)
            modes = np.asarray(modes).T.reshape((modes.shape[1],shp_vec[1],shp_vec[2]))
            V = V[:shp_vec[1]]

        if output_correlation_matrix:
            print "!!!output POD correlation matrix",POD_cm_filename
            np.savetxt(POD_cm_filename,correlation_mat,delimiter=',')

        if output_POD_temporal_modes: 
            print "!!!output POD temporal modes",POD_tm_filename
            # output temporal modes
            singular_vals = eigen_vals**0.5
            POD_mode_energy_normalized = eigen_vals/correlation_mat.trace()[0,0]
            cumsum_POD_mode_energy_normalized = np.cumsum(POD_mode_energy_normalized)
            # generate header string
            header_str = 'temporal modes\n'
            header_str += 'time,eigen value,singular value,normalized eigen value,accumulated normalized eigen value'
            for i in range(N-1):
                header_str += ',Mode{}'.format(i)
            header_str += '\n'
            for i in range(N-1):
                header_str += ',SV ={}'.format(singular_vals[i])
            header_str += '\n'
            for i in range(N-1):
                header_str += ',EV ={}'.format(eigen_vals[i])
            header_str += '\n'
            for i in range(N-1):
                header_str += ',NEnergy ={}'.format(POD_mode_energy_normalized[i])
            header_str += '\n'
            for i in range(N-1):
                header_str += ',CumsumEnergy ={}'.format(cumsum_POD_mode_energy_normalized[i])
            header_str += '\n'

            np.savetxt(POD_tm_filename, \
                        np.c_[times, \
                            eigen_vecs], \
                        delimiter = ',', \
                        header = header_str)
            

        if output_POD_spatial_modes:
            print "!!!output POD spatial Modes to ",POD_sm_filename
            #output to xml vtk unstructured grid file
            ugcd = geom.GetCellData()
            ugcd.Reset()
            ugcd.CopyAllOff()
            for i in range(ugcd.GetNumberOfArrays()):
                ugcd.RemoveArray(0)
            # import POD mode
            for i in range(M):
                ugcd.AddArray(dsa.numpyTovtkDataArray(modes[i],prefix+'_POD_mode_{}_{}'.format(fieldname,i)))
            # add average field
            ugcd.AddArray(dsa.numpyTovtkDataArray(field_avg,'field_{}_avg'.format(fieldname)))

            ugw = vtk.vtkXMLUnstructuredGridWriter()
            ugw.SetInputDataObject(geom)
            ugw.SetFileName(POD_sm_filename)
            ugw.Write()
        if doReconstruction:
            print "!!! do Reconstrution with {} POD modes at time {}".format(MR,ReconTime)
            #get an empty mesh
            ugcd = geom.GetCellData()
            ugcd.Reset()
            ugcd.CopyAllOff()
            for i in range(ugcd.GetNumberOfArrays()):
                ugcd.RemoveArray(0)
            # reconstruct from first MR POD modes
            # 
            ReconN = np.searchsorted(times,ReconTime)
            print "!!!actually, reconstruction is done at time {} rather than time {}".format(times[ReconN],ReconTime)
            recon_field = np.einsum("i...,i,i",modes[:MR],eigen_vals[:MR]**0.5,np.asarray(eigen_vecs)[ReconN,:MR])+field_avg;
            ugcd.AddArray(dsa.numpyTovtkDataArray(recon_field,prefix+'_POD_{}_Reconstructed_{}_{}'.format(MR,fieldname,ReconTime)))

            ugw = vtk.vtkXMLUnstructuredGridWriter()
            ugw.SetInputDataObject(geom)
            ugw.SetFileName(POD_reconstruction_filename)
            ugw.Write()
    if do_DMD:
        print "!!!Begin to calculate DMD modes"
        # if field is a vector, reshape the fields and corresponding volument weight
        if field_is_vector:
            shp_vec = fields.shape
            shp_flat = (fields.shape[0],fields.shape[1]*fields.shape[2])
            fields = fields.reshape(shp_flat)
            V = np.tile(V,shp_vec[2])

        # DMD, I do not know which mode is important, so I have to discard modes_
        modes_, ritz_vals, mode_norms, build_coeffs = mr.compute_DMD_matrices_snaps_method(fields.T,[],inner_product_weights=V,return_all=True)

        # if field is a vector, reshape the fields, V and output matrix
        if field_is_vector:
            fields = fields.reshape(shp_vec)
            V = V[:shp_vec[1]]
        # sorting
        eorder = np.argsort(mode_norms)[::-1]
        # re-order the outputs
        ritz_vals = ritz_vals[eorder]
        mode_norms = mode_norms[eorder]
        build_coeffs = build_coeffs[:,eorder]
        #build the DMD_modes
        DMD_modes = np.einsum('ijk,il->ljk', fields,build_coeffs[:,:M_DMD])
        
        if output_DMD_info:
            print "!!!output DMD info to :",DMD_info_filename
            # output modes info
            header_str = 'DMD modes info\n'
            header_str += 'ritz_vals.real,ritz_vals.imag,growth_rate, frequency, mode_norms\n'
            header_str += r'AU,AU,1/s, Hz, AU'
            dt = np.average(times[1:]-times[:-1]) #time step
            np.savetxt(DMD_info_filename, \
                        np.c_[ np.real(ritz_vals), \
                            np.imag(ritz_vals), \
                            np.log(np.abs(ritz_vals))/dt, \
                            np.angle(ritz_vals)/dt, \
                            mode_norms], \
                        delimiter = ',', \
                        header = header_str) 

        if output_DMD_build_coeffs:
            print "!!!output DMD build coeffs. to :",DMD_build_coeffs_filename
            np.savez(DMD_build_coeffs_filename, build_coeffs)
            
        if output_DMD_spatial_modes:
            print "!!!output DMD info to :",DMD_sm_filename
            #output to xml vtk unstructured grid file
            ugcd = geom.GetCellData()
            ugcd.Reset()
            ugcd.CopyAllOff()
            for i in range(ugcd.GetNumberOfArrays()):
                ugcd.RemoveArray(0)
            #import pi
            from numpy import pi
            
            for i in range(M_DMD):
                ugcd.AddArray(dsa.numpyTovtkDataArray(np.abs(DMD_modes[i]),prefix+'_DMD_mode_abs_{}_{}'.format(fieldname,i)))
                ugcd.AddArray(dsa.numpyTovtkDataArray(np.angle(DMD_modes[i])*180/pi,prefix+'_DMD_mode_angle_{}_{}'.format(fieldname,i)))


            ugw = vtk.vtkXMLUnstructuredGridWriter()
            ugw.SetInputDataObject(geom)
            ugw.SetFileName(DMD_sm_filename)
            ugw.Write()
from future.builtins import range
import numpy as np
import modred as mr

num_vecs = 30
# Arbitrary data
vecs = np.random.random((100, num_vecs))
num_modes = 5
modes, eig_vals = mr.compute_POD_matrices_snaps_method(vecs,
                                                       list(range(num_modes)))
示例#17
0
    fb2_rig = RIGID_DISPLACEMENTS (fb2)
    ib1_rig = RIGID_DISPLACEMENTS (ib1)
    ib2_rig = RIGID_DISPLACEMENTS (ib2)

    pod_input = [(fb1_rig, fb1_defo, 'FB1', fbmod),
                 (fb2_rig, fb2_defo, 'FB2', fbmod),
                 (ib1_rig, ib1_defo, 'IB1', ibmod),
                 (ib2_rig, ib2_defo, 'IB2', ibmod)]

    for (rig, defo, label, num_modes) in pod_input:
      vecs = numpy.transpose(numpy.array(rig+defo))
      svec = vecs.shape[0]
      nvec = vecs.shape[1]
      print '%s:' % label, 'calculating', num_modes, 'POD modes from', nvec, 'input vectors of size', svec, '...'
      try:
        modes, vals = modred.compute_POD_matrices_snaps_method(vecs, list(range(num_modes)))
      except:
	print 'POD generation has failed --> it is possible that you tried to extract too many modes'
	if label[0:2] == 'FB':
	  print '                              try using [-fbmod a_smaller_number] and re-run'
	else:
	  print '                              try using [-ibmod a_smaller_number] and re-run'
	sys.exit ()
      mod = numpy.transpose(modes).tolist()
      val = vals.tolist()
      basevec = [x for vec in mod for x in vec]
      podbase = (val[0:len(mod)], basevec)
      path = afile.replace ('.inp','_' + label + '_base.pickle.gz')
      print 'Saving: %s' % path
      pickle.dump(podbase, gzip.open(path,'wb'))