示例#1
0
    def __init__(self, args):
        self.model = ACGAN()

        self.G_optimizer = torch.optim.Adam(self.model.G.parameters(),
                                            lr=1e-4,
                                            betas=(0.5, 0.999))
        self.D_optimizer = torch.optim.Adam(self.model.D.parameters(),
                                            lr=1e-4,
                                            betas=(0.5, 0.999))
        self.criterion = torch.nn.CrossEntropyLoss()
        self.dataloader = celeba_loader(args.batch_size)

        self.epochs = args.epochs
        self.modelpath = 'ckpt/%s/model.pth' % args.taskname
        self.img_dpath = 'ckpt/' + args.taskname + '/img_%d-%s.png'
        self.args = args
        if args.resume is not None:
            print('resuming model', args.resume)
            self.model.load(args.resume)

        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.model.to(self.device)

        self.LAMBDA = 10
        self.p = 1
        self.q = 1
        self.one = torch.FloatTensor([1]).to(self.device)
        self.mone = self.one * -1

        print('finish init')
示例#2
0
    def __init__(self, args):
        self.model = DCGAN()
        self.G_optimizer = torch.optim.Adam(self.model.G.parameters())
        self.D_optimizer = torch.optim.Adam(self.model.D.parameters())
        self.criterion = torch.nn.BCELoss()
        self.dataloader = celeba_loader(args.batch_size)
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.model.to(self.device)
        self.k = 1

        self.epochs = args.epochs
        self.modelpath = 'ckpt/%s/model.pth' % args.taskname
        self.img_dpath = 'ckpt/' + args.taskname + '/img_%d.png'
示例#3
0
    def __init__(self, args):
        self.model = ACGAN(args)

        self.G_optimizer = torch.optim.Adam(self.model.G.parameters())
        self.D_optimizer = torch.optim.Adam(self.model.D.parameters())
        self.criterion = torch.nn.BCELoss()
        self.label_criterion = torch.nn.CrossEntropyLoss()
        self.dataloader = celeba_loader(args.batch_size)

        self.epochs = args.epochs
        self.modelpath = 'ckpt/%s/model.pth' % args.taskname
        self.img_dpath = 'ckpt/' + args.taskname + '/img_%d-%s.png'
        self.args = args
        if args.resume is not None:
            print('loading model')
            self.model.load(self.modelpath)

        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        self.model.to(self.device)

        self.p = 1
        self.q = 1