def tweakml_PS_NUMBER(lcs, spline): return twk.tweakml_PS(lcs, spline, B_PARAM, f_min=1 / 300.0, psplot=False, verbose=False, interpolation='linear')
def tweakml_PS_4(lcs, spline): return twk.tweakml_PS(lcs, spline, 0.12500000000000003, f_min=1 / 300.0, psplot=False, verbose=False, interpolation='linear', A_correction=0.9883240534172314)
def tweakml_PS_3(lcs, spline): return twk.tweakml_PS(lcs, spline, 1.5499999999999998, f_min=1 / 300.0, psplot=False, verbose=False, interpolation='linear', A_correction=0.9497062988061292)
def tweakml_PS_2(lcs, spline): return twk.tweakml_PS(lcs, spline, 0.12500000000000003, f_min=1 / 300.0, psplot=False, verbose=False, interpolation='linear', A_correction=1.0439695004938903)
def tweakml_PS_1(lcs, spline): return twk.tweakml_PS(lcs, spline, 0.12500000000000003, f_min=1 / 300.0, psplot=False, verbose=False, interpolation='linear', A_correction=1.0385175125538744)
def tweakml_PS(lcs, spline, B, A_correction): return twk.tweakml_PS(lcs, spline, B, f_min=1 / 300.0, psplot=False, save_figure_folder=None, verbose=self.verbose, interpolation='linear', A_correction=A_correction)
for l in lcs: ml.append(l.ml.spline.copy()) B_vec = np.linspace(0.1, 1.0, 10) for B in B_vec: #set back the original microelnsing : for i, l in enumerate(lcs): l.ml.spline = ml[i] # lcs[i].ml.spline.display() twk.tweakml_PS([lcs[0]], spline, B, f_min=1 / 300.0, save_figure_folder='./', psplot=False, verbose=True, interpolation='linear') twk.tweakml_PS([lcs[1]], spline, B, f_min=1 / 300.0, save_figure_folder='./', psplot=False, verbose=True, interpolation='linear') twk.tweakml_PS([lcs[2]], spline, B, f_min=1 / 300.0,
picklepath = "../Simulation/" + object + '_' + dataname + '/' + 'spl1_ks%i_splml_ksml_%i/' % ( kntstp, ml_kntstep) picklename = "initopt_%s_ks%i_ksml%i.pkl" % (dataname, kntstp, ml_kntstep) curve = 0 (lcs, spline) = pycs.gen.util.readpickle(picklepath + picklename) A = 1.0 #this is the maximum frequency you want to add (in unit of the Nymquist frequency of your signal) B = [0.1] #this is the scaling of the power spectrum # #To check what does the microlensing curve looks like rls = pycs.gen.stat.subtract(lcs, spline) # lcs[0].ml.spline.display() # lcs[1].ml.spline.display() # lcs[2].ml.spline.display() print "Nb coefficient before tweak :", len(lcs[curve].ml.spline.c) print "before tweak :", pycs.gen.stat.resistats(rls[0]) twk.tweakml_PS(lcs[curve], spline, B, f_min=1 / 300.0, save_figure_folder='./', psplot=True, verbose=True, interpolation='linear') # lcs[0].ml.spline.display() # lcs[1].ml.spline.display() # lcs[2].ml.spline.display() print "Nb coefficient after tweak :", len(lcs[curve].ml.spline.c)