def main(): """Run this experiment""" training_ints = initialize_instances('./../data/wine_train.csv') testing_ints = initialize_instances('./../data/wine_test.csv') factory = BackPropagationNetworkFactory() measure = SumOfSquaresError() data_set = DataSet(training_ints) acti = LogisticSigmoid() rule = RPROPUpdateRule() # oa_names = ["Backprop"] classification_network = factory.createClassificationNetwork([INPUT_LAYER, HIDDEN_LAYER1, OUTPUT_LAYER],acti) train(BatchBackPropagationTrainer(data_set,classification_network,measure,rule), classification_network, 'Backprop', training_ints,testing_ints, measure, TRAINING_ITERATIONS, OUTFILE)
def main(): """Run this experiment""" training_ints = initialize_instances('./../data/bank_train.csv') testing_ints = initialize_instances('./../data/bank_test.csv') factory = BackPropagationNetworkFactory() measure = SumOfSquaresError() data_set = DataSet(training_ints) acti = LogisticSigmoid() rule = RPROPUpdateRule() classification_network = factory.createClassificationNetwork( [INPUT_LAYER, HIDDEN_LAYER1, OUTPUT_LAYER], acti) nnop = NeuralNetworkOptimizationProblem(data_set, classification_network, measure) oa = RandomizedHillClimbing(nnop) train(oa, classification_network, 'RHC', training_ints, testing_ints, measure, TRAINING_ITERATIONS, OUTFILE)
def main(T, CE): """Run this experiment""" training_ints = initialize_instances('./../data/wine_train.csv') testing_ints = initialize_instances('./../data/wine_test.csv') factory = BackPropagationNetworkFactory() measure = SumOfSquaresError() data_set = DataSet(training_ints) acti = LogisticSigmoid() rule = RPROPUpdateRule() oa_name = "SA_{}_{}".format(T, CE) with open(OUTFILE,'w') as f: f.write('{},{},{},{},{},{}\n'.format('iteration','MSE_trg','MSE_tst','acc_trg','acc_tst','elapsed')) classification_network = factory.createClassificationNetwork([INPUT_LAYER, HIDDEN_LAYER1, OUTPUT_LAYER],acti) nnop = NeuralNetworkOptimizationProblem(data_set, classification_network, measure) oa = SimulatedAnnealing(T, CE, nnop) train(oa, classification_network, oa_name, training_ints, testing_ints, measure, TRAINING_ITERATIONS, OUTFILE)