class InteractiveSession: def __init__(self): et = EntityTracker() self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed() at = ActionTracker(et) obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features self.action_templates = at.get_action_templates() action_size = at.action_size nb_hidden = 128 self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) # restore checkpoint self.net.restore() def interact(self): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() # begin interaction loop while True: # get input from user u = input('User: '******'clear' or u == 'reset' or u == 'restart': self.net.reset_state() et = EntityTracker() at = ActionTracker(et) print('Bot: Reset successfully') # check for entrance and exit command elif u == 'exit' or u == 'stop' or u == 'quit' or u == 'q': print("Bot: Thank you for using") break elif u == 'hello' or u == 'hi': print("Bot: Hello, what can i do for you") elif u == 'thank you' or u == 'thanks' or u == 'thank you very much': print('Bot: You are welcome') break else: if not u: continue u = u.lower() # encode u_ent = et.extract_entities(u) u_ent_features = et.context_features() # 5 # print(et.entities) # print(et.ctxt_features) u_emb = self.emb.encode(u) # 300 u_bow = self.bow_enc.encode(u) # 60 # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # print(features.shape) # get action mask action_mask = at.action_mask() # action_mask = np.ones(self.net.action_size) # print("action_mask: ", action_mask) # forward prediction = self.net.forward(features, action_mask) response = self.action_templates[prediction] if prediction == 0: slot_values = copy.deepcopy(et.entities) slot_values.pop('<location>') memory = [] count = 0 for k, v in slot_values.items(): memory.append('='.join([k, v])) count += 1 if count == 2: memory.append('\n') response = response.replace("memory", ', '.join(memory)) # memory = ', '.join(slot_values.values()) # response = response.replace("memory", memory) self.net.reset_state() et = EntityTracker() at = ActionTracker(et) # print('Execute successfully and begin new session') if prediction == 1: response = response.replace("location", '<location>=' + et.entities['<location>']) print('Bot: ', response)
class Trainer(): def __init__(self): et = EntityTracker() self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed() at = ActionTracker(et) self.dataset, dialog_indices = Data(et, at).trainset self.dialog_indices_tr = dialog_indices[:200] self.dialog_indices_dev = dialog_indices[200:250] obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features self.action_templates = at.get_action_templates() action_size = at.action_size nb_hidden = 128 self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) def train(self): print('\n---training started---\n') epochs = 20 for j in range(epochs): # iterate through dialogs num_tr_examples = len(self.dialog_indices_tr) loss = 0. for i,dialog_idx in enumerate(self.dialog_indices_tr): # get start and end index start, end = dialog_idx['start'], dialog_idx['end'] # train on dialogue loss += self.dialog_train(self.dataset[start:end]) # print #iteration sys.stdout.write('\r{}.[{}/{}]'.format(j+1, i+1, num_tr_examples)) print('\n\n--- {}.tr loss {} ---'.format(j+1, loss/num_tr_examples)) # evaluate every epoch accuracy = self.evaluate() print('--- {}.dev accuracy {} ---\n'.format(j+1, accuracy)) if accuracy > 0.99: self.net.save() break def dialog_train(self, dialog): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() loss = 0. # iterate through dialog for (u, r) in dialog: u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = at.action_mask() # forward propagation # train step loss += self.net.train_step(features, r, action_mask) return loss/len(dialog) def evaluate(self): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() dialog_accuracy = 0. for dialog_idx in self.dialog_indices_dev: start, end = dialog_idx['start'], dialog_idx['end'] dialog = self.dataset[start:end] num_dev_examples = len(self.dialog_indices_dev) # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() # iterate through dialog correct_examples = 0 for (u,r) in dialog: # encode utterance u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = at.action_mask() # forward propagation # train step prediction = self.net.forward(features, action_mask) correct_examples += int(prediction == r) # get dialog accuracy dialog_accuracy += correct_examples/len(dialog) return dialog_accuracy/num_dev_examples
class InteractiveSession(): def __init__(self): et = EntityTracker() self.bow_enc = BoW_encoder(et) self.emb = UtteranceEmbed() at = ActionTracker(et) obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features self.action_templates = at.get_action_templates() action_size = at.action_size nb_hidden = 128 self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) # restore checkpoint self.net.restore() def interact(self, input): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() # begin interaction loop #while True: # get input from user #u = input(':: ') u = input # check if user wants to begin new session if u == 'clear' or u == 'reset' or u == 'restart': self.net.reset_state() et = EntityTracker() at = ActionTracker(et) print('') # check for exit command #elif u == 'exit' or u == 'stop' or u == 'quit' or u == 'q': #break else: # ENTER press : silence if not u: u = '<SILENCE>' # encode u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = at.action_mask() # forward prediction = self.net.forward(features, action_mask) #print('>>', self.action_templates[prediction]) return self.action_templates[prediction]
class InteractiveSession(): def __init__(self): et = EntityTracker() self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed() at = ActionTracker(et) obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features self.action_templates = at.get_action_templates() action_size = at.action_size nb_hidden = 128 self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) # restore checkpoint self.net.restore() def interact(self): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() # begin interaction loop while True: # get input from user u = input(':: ') # check if user wants to begin new session if u == 'clear' or u == 'reset' or u == 'restart': self.net.reset_state() et = EntityTracker() at = ActionTracker(et) print('') # check for exit command elif u == 'exit' or u == 'stop' or u == 'quit' or u == 'q': break else: # ENTER press : silence if not u: u = '<SILENCE>' # encode u_ent, u_entities = et.extract_entities(u, is_test=True) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = at.action_mask() # forward prediction = self.net.forward(features, action_mask) print('prediction : ', prediction) print(u_entities) print('\n') if self.post_process(prediction, u_ent_features): print( '>>', 'api_call ' + u_entities['<cuisine>'] + ' ' + u_entities['<location>'] + ' ' + u_entities['<party_size>'] + ' ' + u_entities['<rest_type>']) else: prediction = self.action_post_process( prediction, u_entities) print('>>', self.action_templates[prediction]) # if all entities is satisfied and the user agree to make a reservation. if all(u_ent_featur == 1 for u_ent_featur in u_ent_features) and (prediction == 10): break def post_process(self, prediction, u_ent_features): if prediction == 0: return True attr_list = [9, 12, 6, 1] if all(u_ent_featur == 1 for u_ent_featur in u_ent_features) and prediction in attr_list: return True else: return False def action_post_process(self, prediction, u_entities): attr_mapping_dict = { 9: '<cuisine>', 12: '<location>', 6: '<party_size>', 1: '<rest_type>' } # find exist and non-exist entity exist_ent_index = [ key for key, value in u_entities.items() if value != None ] non_exist_ent_index = [ key for key, value in u_entities.items() if value == None ] # if predicted key is already in exist entity index then find non exist entity index # and leads the user to input non exist entity. if prediction in attr_mapping_dict: pred_key = attr_mapping_dict[prediction] if pred_key in exist_ent_index: for key, value in attr_mapping_dict.items(): if value == non_exist_ent_index[0]: return key else: return prediction else: return prediction
class Trainer(): def __init__(self): et = EntityTracker() self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed() at = ActionTracker(et) self.dataset, dialog_indices = Data(et, at).trainset random.shuffle(dialog_indices) self.dialog_indices_tr = dialog_indices[:200] self.dialog_indices_dev = dialog_indices[200:250] obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features self.action_templates = at.get_action_templates() action_size = at.action_size nb_hidden = 128 self.net = LSTM_wrapper(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) def train(self): print('\n:: training started\n') epochs = 80 for j in range(epochs): # iterate through dialogs num_tr_examples = len(self.dialog_indices_tr) loss = 0. for i,dialog_idx in enumerate(self.dialog_indices_tr): # get start and end index start, end = dialog_idx['start'], dialog_idx['end'] # train on dialogue loss += self.dialog_train(self.dataset[start:end]) # print #iteration sys.stdout.write('\r{}.[{}/{}]'.format(j+1, i+1, num_tr_examples)) print('\n\n:: {}.tr loss {}'.format(j+1, loss/num_tr_examples)) # evaluate every epoch accuracy = self.evaluate() print(':: {}.dev accuracy {}\n'.format(j+1, accuracy)) # if accuracy > 0.99: # self.net.save() # break def dialog_train(self, dialog): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() loss = 0. # iterate through dialog for (u,r) in dialog: # print("Here in the dialog loop") u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = torch.autograd.Variable(torch.from_numpy(np.concatenate((u_ent_features, u_emb, u_bow), axis=0))).float() # print(features) # get action mask action_mask = torch.autograd.Variable(torch.from_numpy(at.action_mask())) r = torch.autograd.Variable(torch.LongTensor([r])) # print(r) # forward propagation # train step loss += self.net.train_step(features, r, action_mask) return loss/len(dialog) def evaluate(self): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() dialog_accuracy = 0. r_count = 0 #Count of task 15 count = 0 # Total count of rewards for dialog_idx in self.dialog_indices_dev: start, end = dialog_idx['start'], dialog_idx['end'] dialog = self.dataset[start:end] num_dev_examples = len(self.dialog_indices_dev) # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() # iterate through dialog correct_examples = 0 for (u,r) in dialog: # encode utterance u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features # get action mask features = torch.autograd.Variable(torch.from_numpy(np.concatenate((u_ent_features, u_emb, u_bow), axis=0))).float() # print(features) # get action mask action_mask = torch.autograd.Variable(torch.from_numpy(at.action_mask())) # r = torch.autograd.Variable(torch.LongTensor([r])) # forward propagation # train step logits,probs,prediction = self.net.forward(features, action_mask) # print("logits", logits) # print("probs", probs) # print("prediction", logits,probs,prediction) # print(prediction,r) correct_examples += int(prediction == r) if r==15: r_count += 1 count += 1 # get dialog accuracy dialog_accuracy += correct_examples/len(dialog) print("task 15 was the answer with freq",r_count/count) return dialog_accuracy/num_dev_examples
class Trainer(): def __init__(self): import os #实体追踪 et = EntityTracker() #词袋 word2vec self.bow_enc = BoW_encoder() #加载word2vec embedding self.emb = UtteranceEmbed() #将实体追踪器添加到动作追踪器中 at = ActionTracker(et) #得到数据集和对话开始 结束行数 self.dataset, dialog_indices = Data(et, at).trainset #划分数据集:200对做训练 50对做测试 self.dialog_indices_tr = dialog_indices self.dialog_indices_dev = dialog_indices #obs_size 300维的词向量 + 85个袋中的词 + 4个槽位 obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features #话术模板 self.action_templates = at.get_action_templates() #动作个数 action_size = at.action_size #隐藏层神经元个数 nb_hidden = 128 self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) def train(self): print('\n:: training started\n') epochs = 25 for j in range(epochs): # iterate through dialogs #训练集个数 num_tr_examples = len(self.dialog_indices_tr) loss = 0. for i, dialog_idx in enumerate(self.dialog_indices_tr): # get start and end index start, end = dialog_idx['start'], dialog_idx['end'] # train on dialogue loss += self.dialog_train(self.dataset[start:end]) # print #iteration sys.stdout.write('\r{}.[{}/{}]'.format(j + 1, i + 1, num_tr_examples)) print('\n\n:: {}.tr loss {}'.format(j + 1, loss / num_tr_examples)) # evaluate every epoch accuracy = self.evaluate() print(':: {}.dev accuracy {}\n'.format(j + 1, accuracy)) if accuracy > 0.4: self.net.save() continue #训练过程 def dialog_train(self, dialog): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() loss = 0. # iterate through dialog #u 用户输入 r 对应的动作索引 for (u, r) in dialog: #u_ent 分词后的字符串 u_ent = et.extract_entities(u) #槽位填充情况 【0 0 0 0】 u_ent_features = et.context_features() #word2vec u_emb = self.emb.encode(u) #multi-hot u_bow = self.bow_enc.encode(u) # concat features #300 + 85 + 4 = 389 features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = at.action_mask() # forward propagation # train step loss += self.net.train_step(features, r, action_mask) return loss / len(dialog) #评估acc def evaluate(self): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() dialog_accuracy = 0. #加载测试集 for dialog_idx in self.dialog_indices_dev: start, end = dialog_idx['start'], dialog_idx['end'] dialog = self.dataset[start:end] num_dev_examples = len(self.dialog_indices_dev) # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() # iterate through dialog correct_examples = 0 #对于每个dialog 提取出utterance 和 response for (u, r) in dialog: # encode utterance #提取出user中带有的实体 u_ent = et.extract_entities(u) #提取当前槽位填充情况 u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask 16维的multi-hot 向量 action_mask = at.action_mask() # forward propagation # train step prediction = self.net.forward(features, action_mask) correct_examples += int(prediction == r) # get dialog accuracy dialog_accuracy += correct_examples / len(dialog) return dialog_accuracy / num_dev_examples
class Trainer(): def __init__(self): et = EntityTracker() self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed() at = ActionTracker(et) self.train_dataset, train_dialog_indices = Data(et, at).train_set self.test_dataset, test_dialog_indices = Data(et, at).test_set print('=========================\n') print('length of Train dialog indices : ', len(train_dialog_indices)) print('=========================\n') print('=========================\n') print('length of Test dialog indices : ', len(test_dialog_indices)) print('=========================\n') # Shuffle Training Dataset random.shuffle(train_dialog_indices) self.dialog_indices_tr = train_dialog_indices self.dialog_indices_dev = test_dialog_indices obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features self.action_templates = at.get_action_templates() action_size = at.action_size # nb_hidden = 128 nb_hidden = 150 print('=========================\n') print('Action_templates: ', action_size) print('=========================\n') self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) self.et = et self.at = at action_projection = [] for action in self.action_templates: action_projection.append(self.emb.encode(action)) self.action_projection = np.transpose(action_projection) self.action_size = action_size def train(self, exp_name, model_name): print('\n:: training started\n') epochs = 100 import joblib per_response_list = [] per_dialogue_list = [] early_stop = False early_stop_count = 0 for j in range(epochs): # iterate through dialogs num_tr_examples = len(self.dialog_indices_tr) loss = 0. for i,dialog_idx in enumerate(self.dialog_indices_tr): # get start and end index start, end = dialog_idx['start'], dialog_idx['end'] # train on dialogue loss += self.dialog_train(self.train_dataset[start:end]) # print #iteration sys.stdout.write('\r{}.[{}/{}]'.format(j+1, i+1, num_tr_examples)) print('\n\n:: {}.tr loss {}'.format(j+1, loss/num_tr_examples)) # evaluate every epoch accuracy = self.evaluate() per_response_list.append(accuracy[0]) per_dialogue_list.append(accuracy[1]) max_dialogue = max(per_dialogue_list) if len(per_dialogue_list) > 1: prev_max_dialogue = sorted(per_dialogue_list, reverse=True)[1] if max_dialogue > 2.0 and accuracy[1] > prev_max_dialogue: early_stop_count += 1 self.net.save(model_name) print(':: {}.dev accuracy {}\n'.format(j+1, accuracy)) print('current max dialogue accuracy : {}\n'.format(sorted(per_dialogue_list, reverse=True)[0])) print('Max Dialogue Accuracy : ', max(per_dialogue_list)) joblib.dump(per_response_list, 'emnlp_performance/with_slot/per_response_list_' + exp_name) joblib.dump(per_dialogue_list, 'emnlp_performance/with_slot/per_dialogue_list_' + exp_name) # self.net.save() def dialog_train(self, dialog): # create entity tracker et = self.et et.init_entities() # create action tracker at = self.at # reset network self.net.reset_state() self.net.reset_attention() loss = 0. i = 0 pred_list = [] # iterate through dialog for (u,r) in dialog: i += 1 if r == '<UNK>': continue u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) if i ==1: loss += self.net.train_step(features, r, self.action_projection) pred_list.append(r) else: action_one_hot = np.zeros(self.action_size) action_one_hot[pred_list[-1]] = 1 loss += self.net.train_step(features, r, self.action_projection, action_one_hot) pred_list.append(r) return loss / len(dialog) def evaluate(self): dialog_accuracy = 0. correct_dialogue_count = 0 # for each dialog for dialog_idx in self.dialog_indices_dev: start, end = dialog_idx['start'], dialog_idx['end'] dialog = self.test_dataset[start:end] num_dev_examples = len(self.dialog_indices_dev) # create entity tracker et = self.et et.init_entities() # create action tracker at = self.at # reset network self.net.reset_state() self.net.reset_attention() # iterate through dialog correct_examples = 0 pred_list = [] i = 0 for (u,r) in dialog: i += 1 if u == 'api_call no result': correct_examples += 1 continue if r == '<UNK>': # correct_examples += 1 continue # encode utterance u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) if i == 1: prediction, user_attention_weights, action_weights = self.net.forward(features, self.action_projection) pred_list.append(prediction) else: action_one_hot = np.zeros(self.action_size) action_one_hot[pred_list[-1]] = 1 prediction, user_attention_weights, action_weights = self.net.forward(features, self.action_projection, action_one_hot) pred_list.append(prediction) correct_examples += int(prediction == r) if correct_examples == len(dialog): correct_dialogue_count += 1 # get dialog accuracy dialog_accuracy += correct_examples / len(dialog) per_response_accuracy = dialog_accuracy / num_dev_examples * 100 per_dialogue_accuracy = correct_dialogue_count / num_dev_examples * 100 print('=============================') print('correct dialogue count') print(correct_dialogue_count) print('=============================\n') return per_response_accuracy, per_dialogue_accuracy
class InteractiveSession: def __init__(self): self.et = EntityTracker() self.at = ActionTracker(self.et) self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed() obs_size = self.emb.dim + self.bow_enc.vocab_size + self.et.num_features self.action_templates = self.at.get_action_templates() action_size = self.at.action_size nb_hidden = 128 self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) # restore checkpoint self.net.restore() self.net.reset_state() def reset(self): self.net.reset_state() self.et = EntityTracker() self.at = ActionTracker(self.et) def interact(self, utterance, intent, slot_values): # get input from user u = utterance.lower() # check if user wants to begin new session if u == 'clear' or u == 'reset' or u == 'restart': self.reset() return "reset successfully" # check for entrance and exit command elif u == 'exit' or u == 'stop' or u == 'quit' or u == 'q': self.reset() return "Thank you for using" elif u == 'hello' or u == 'hi': self.reset() return "what can i do for you" elif u == 'thank you' or u == 'thanks' or u == 'thank you very much': self.reset() return 'you are welcome' else: # encode u_ent = self.et.extract_entities(u, intent, slot_values) u_ent_features = self.et.context_features() # 5 u_emb = self.emb.encode(u) # 300 u_bow = self.bow_enc.encode(u) # 60 # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = self.at.action_mask() # action_mask = np.ones(self.net.action_size) # forward prediction = self.net.forward(features, action_mask) response = self.action_templates[prediction] if prediction == 0: slot_values = copy.deepcopy(self.et.entities) slot_values.pop('location') memory = ', '.join(slot_values.values()) response = response.replace("memory", memory) self.reset() print('API CALL execute successfully and begin new session') if prediction == 1: response = response.replace("location", self.et.entities['location']) return response
class Trainer(): def __init__(self): et = EntityTracker() self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed() at = ActionTracker(et) ''' ['any preference on a type of cuisine', 'api_call <cuisine> <location> <party_size> <rest_type>', 'great let me do the reservation', 'hello what can i help you with today', 'here it is <info_address>', 'here it is <info_phone>', 'how many people would be in your party', "i'm on it", 'is there anything i can help you with', 'ok let me look into some options for you', 'sure is there anything else to update', 'sure let me find an other option for you', 'what do you think of this option: <restaurant>', 'where should it be', 'which price range are looking for', "you're welcome"] ''' self.dataset, dialog_indices = Data(et, at).trainset self.dialog_indices_tr = dialog_indices[:200] self.dialog_indices_dev = dialog_indices[200:250] obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features self.action_templates = at.get_action_templates() action_size = at.action_size nb_hidden = 128 self.net = LSTM_net(obs_size=obs_size, action_size=action_size, nb_hidden=nb_hidden) def train(self): print('\n:: training started\n') epochs = 20 for j in range(epochs): # iterate through dialogs num_tr_examples = len(self.dialog_indices_tr) loss = 0. for i, dialog_idx in enumerate(self.dialog_indices_tr): # get start and end index start, end = dialog_idx['start'], dialog_idx['end'] # train on dialogue loss += self.dialog_train(self.dataset[start:end]) # print #iteration sys.stdout.write('\r{}.[{}/{}]'.format(j + 1, i + 1, num_tr_examples)) print('\n\n:: {}.tr loss {}'.format(j + 1, loss / num_tr_examples)) # evaluate every epoch accuracy = self.evaluate() print(':: {}.dev accuracy {}\n'.format(j + 1, accuracy)) if accuracy > 0.99: self.net.save() break def dialog_train(self, dialog): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() loss = 0. # iterate through dialog for (u, r) in dialog: u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = at.action_mask() # forward propagation # train step loss += self.net.train_step(features, r, action_mask) return loss / len(dialog) def evaluate(self): # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() dialog_accuracy = 0. for dialog_idx in self.dialog_indices_dev: start, end = dialog_idx['start'], dialog_idx['end'] dialog = self.dataset[start:end] num_dev_examples = len(self.dialog_indices_dev) # create entity tracker et = EntityTracker() # create action tracker at = ActionTracker(et) # reset network self.net.reset_state() # iterate through dialog correct_examples = 0 for (u, r) in dialog: # encode utterance u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_emb = self.emb.encode(u) u_bow = self.bow_enc.encode(u) # concat features features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) # get action mask action_mask = at.action_mask() # forward propagation # train step prediction = self.net.forward(features, action_mask) correct_examples += int(prediction == r) # get dialog accuracy dialog_accuracy += correct_examples / len(dialog) return dialog_accuracy / num_dev_examples
class Dialogue(): def __init__(self): # stor whole dialogues self.story = [] self.sp_confidecne = [] self.file_path = os.path.join( rospkg.RosPack().get_path('dialogue_system'), 'log', 'dialogue.txt') # count turn taking self.usr_count = 0 self.sys_count = 0 # paramaters self.network_type = rospy.get_param('~network_model', 'stacked_lstm') self.lang_type = rospy.get_param('~lang', 'eng') self.is_emb = rospy.get_param('~embedding', 'false') self.is_am = rospy.get_param('~action_mask', "true") self.user_num = rospy.get_param('~user_number', '0') # call rest of modules self.et = EntityTracker() self.at = ActionTracker(self.et) self.bow_enc = BoW_encoder() self.emb = UtteranceEmbed(lang=self.lang_type) # select observation size for RNN if self.is_am and self.is_emb: obs_size = self.emb.dim + self.bow_enc.vocab_size + self.et.num_features + self.at.action_size elif self.is_am and not (self.is_emb): obs_size = self.bow_enc.vocab_size + self.et.num_features + self.at.action_size elif not (self.is_am) and self.is_emb: obs_size = self.emb.dim + self.bow_enc.vocab_size + self.et.num_features elif not (self.is_am) and not (self.is_emb): obs_size = self.bow_enc.vocab_size + self.et.num_features self.action_template = self.at.get_action_templates() self.at.do_display_template() # must clear entities space self.et.do_clear_entities() action_size = self.at.action_size nb_hidden = 128 if self.network_type == 'gru': self.net = GRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) elif self.network_type == 'reversed_lstm': self.net = ReversingLSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) elif self.network_type == 'reversed_gru': self.net = ReversingGRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) elif self.network_type == 'stacked_gru': self.net = StackedGRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) elif self.network_type == 'stacked_lstm': self.net = StackedLSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) elif self.network_type == 'lstm': self.net = LSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) elif self.network_type == 'bidirectional_lstm': self.net = BidirectionalLSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) elif self.network_type == 'bidirectional_gru': self.net = BidirectionalGRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_am) # restore trained model self.net.restore() # rostopics self.pub_reply = rospy.Publisher('reply', Reply, queue_size=10) self.pub_complete = rospy.Publisher('complete_execute_scenario', Empty, queue_size=10) rospy.Subscriber('raising_events', RaisingEvents, self.handle_raise_events) try: rospy.wait_for_service('reception_db/query_data') self.get_response_db = rospy.ServiceProxy( 'reception_db/query_data', DBQuery) rospy.logwarn("waiting for reception DB module...") except rospy.exceptions.ROSInterruptException as e: rospy.logerr(e) quit() rospy.logwarn( "network: {}, lang: {}, action_mask: {}, embedding: {}, user_number: {}" .format(self.network_type, self.lang_type, self.is_am, self.is_emb, self.user_num)) self.story.append('user number: %s' % self.user_num) rospy.loginfo('\033[94m[%s]\033[0m initialized.' % rospy.get_name()) # if utterance == 'clear': # self.net.reset_state() # self.et.do_clear_entities() # response = 'context has been cleared.' def get_response(self, utterance): rospy.loginfo("actual input: %s" % utterance) # check actual user input # clean utterance # utterance = re.sub(r'[^ a-z A-Z 0-9]', " ", utterance) # utterance preprocessing u_ent, u_entities = self.et.extract_entities(utterance, is_test=True) u_ent_features = self.et.context_features() u_bow = self.bow_enc.encode(utterance) if self.is_emb: u_emb = self.emb.encode(utterance) try: if self.is_am: action_mask = self.at.action_mask() # concatenated features if self.is_am and self.is_emb: features = np.concatenate( (u_ent_features, u_emb, u_bow, action_mask), axis=0) elif self.is_am and not (self.is_emb): features = np.concatenate((u_ent_features, u_bow, action_mask), axis=0) elif not (self.is_am) and self.is_emb: features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) elif not (self.is_am) and not (self.is_emb): features = np.concatenate((u_ent_features, u_bow), axis=0) # try: # predict template number if self.is_am: probs, prediction = self.net.forward(features, action_mask) else: probs, prediction = self.net.forward(features) # check response confidence if max(probs) > BOUNDARY_CONFIDENCE: response = self.action_template[prediction] prediction = self.pre_action_process(prediction, u_entities) # handle api call if self.post_process(prediction, u_entities): if prediction == 1: response = 'api_call appointment {} {} {} {} {} {} {}'.format( u_entities['<first_name>'], u_entities['<last_name>'], u_entities['<address_number>'], u_entities['<address_name>'], u_entities['<address_type>'], u_entities['<time>'], u_entities['<pm_am>']) elif prediction == 2: response = 'api_call location {}'.format( u_entities['<location>']) elif prediction == 3: response = 'api_call prescription {} {} {} {} {}'.format( u_entities['<first_name>'], u_entities['<last_name>'], u_entities['<address_number>'], u_entities['<address_name>'], u_entities['<address_type>']) elif prediction == 4: response = 'api_call waiting_time {} {} {} {} {} {} {}'.format( u_entities['<first_name>'], u_entities['<last_name>'], u_entities['<address_number>'], u_entities['<address_name>'], u_entities['<address_type>'], u_entities['<time>'], u_entities['<pm_am>']) response = self.get_response_db( response ) # query knowledge base; here we use dynamo db response = response.response elif prediction in [6, 9, 11]: response = self.action_template[prediction] response = response.split(' ') response = [ word.replace('<first_name>', u_entities['<first_name>']) for word in response ] response = ' '.join(response) else: response = self.action_template[prediction] else: response = random.choice( REPROMPT ) # if prediction confidence less than 40%, reprompt except: response = random.choice(REPROMPT) return prediction, probs, response def handle_raise_events(self, msg): utterance = msg.recognized_word try: # get confidence data = json.loads(msg.data[0]) confidence = data['confidence'] except: confidence = None if confidence > BOUNDARY_CONFIDENCE or confidence == None: if 'silency_detected' in msg.events: utterance = '<SILENCE>' else: try: self.story.append( "U%i: %s (sp_conf:%f)" % (self.usr_count + 1, utterance, confidence)) self.sp_confidecne.append(confidence) except: self.story.append("U%i: %s" % (self.usr_count + 1, utterance)) self.usr_count += 1 utterance = utterance.lower() # generate system response prediction, probs, response = self.get_response(utterance) else: prediction = -1 probs = -1 response = random.choice(REPROMPT) # add system turn self.story.append("A%i: %s" % (self.sys_count + 1, response)) self.sys_count += 1 # finish interaction if (prediction == 6): self.pub_complete.publish() # logging user and system turn self.story.append("user: %i, system: %i" % (self.usr_count, self.sys_count)) self.story.append("mean_sp_conf: %f" % (reduce(lambda x, y: x + y, self.sp_confidecne) / len(self.sp_confidecne))) self.story.append( '===================================================================' ) self.write_file(self.file_path, self.story) # display system response rospy.loginfo(json.dumps(self.et.entities, indent=2)) # recognized entity values try: rospy.logwarn("System: [conf: %f, predict: %d] / %s\n" % (max(probs), prediction, response)) except: rospy.logwarn("System: [] / %s\n" % (response)) reply_msg = Reply() reply_msg.header.stamp = rospy.Time.now() reply_msg.reply = response self.pub_reply.publish(reply_msg) def post_process(self, prediction, u_ent_features): api_call_list = [1, 2, 3, 4] if prediction in api_call_list: return True attr_list = [0, 9, 10, 11, 12] if all(u_ent_featur == 1 for u_ent_featur in u_ent_features) and prediction in attr_list: return True else: return False def action_post_process(self, prediction, u_entities): attr_mapping_dict = { 11: '<first_name>', 11: '<last_name>', 12: '<address_number>', 12: '<address_name>', 12: '<address_type>', 10: '<time>', 10: '<pm_am>', } # find exist and non-exist entity exist_ent_index = [ key for key, value in u_entities.items() if value != None ] non_exist_ent_index = [ key for key, value in u_entities.items() if value == None ] # if predicted key is already in exist entity index then find non exist entity index # and leads the user to input non exist entity. if prediction in attr_mapping_dict: pred_key = attr_mapping_dict[prediction] if pred_key in exist_ent_index: for key, value in attr_mapping_dict.items(): if value == non_exist_ent_index[0]: return key else: return prediction else: return prediction def pre_action_process(self, prediction, u_entities): api_call_list = [1, 3, 4] attr_mapping_dict = { '<first_name>': 11, '<last_name>': 11, '<address_number>': 12, '<address_name>': 12, '<address_type>': 12, '<time>': 10, '<pm_am>': 10, } # find exist and non-exist entity non_exist_ent_index = [ key for key, value in u_entities.items() if value == None ] if prediction in api_call_list: if '<first_name>' in non_exist_ent_index: prediction = attr_mapping_dict['<first_name>'] return prediction ''' writing story log file ''' def write_file(self, path, story_list): with open(path, 'a') as f: for item in story_list: f.write("%s\n" % item) rospy.logwarn('save dialogue histories.')
class Train(): def __init__(self, args): self.response_accuracy = [] self.dialog_accuracy = [] try: ###################### selective import ############################# if args[0] == 'am': self.is_action_mask = True else: self.is_action_mask = False if args[1] == 'emb': self.is_emb = True else: self.is_emb = False self.network_type = args[2] self.lang_type = args[3] if self.lang_type == 'eng': from modules.entities import EntityTracker from modules.data_utils import Data from modules.actions import ActionTracker from modules.bow import BoW_encoder elif self.lang_type == 'kor': from modules.entities_kor import EntityTracker from modules.data_utils_kor import Data from modules.actions_kor import ActionTracker from modules.bow_kor import BoW_encoder ################################################################### except: rospy.logwarn( "please try again. i.e. ... train.py <am> <emb> <bidirectional_lstm> <eng>" ) if self.is_emb: if self.lang_type == 'eng': self.emb = UtteranceEmbed(lang=self.lang_type) elif self.lang_type == 'kor': self.emb = UtteranceEmbed(lang=self.lang_type) et = EntityTracker() self.bow_enc = BoW_encoder() at = ActionTracker(et) at.do_display_template() self.dataset, dialog_indices = Data(et, at).trainset # self.dialog_indices_tr = dialog_indices[:200] self.dialog_indices_tr = random.sample(dialog_indices, 200) # self.dialog_indices_dev = dialog_indices[200:250] self.dialog_indices_dev = random.sample(dialog_indices, 50) self.action_templates = at.get_action_templates() action_size = at.action_size nb_hidden = 128 # set feature input if self.is_action_mask and self.is_emb: obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features + at.action_size elif self.is_action_mask and not (self.is_emb): obs_size = self.bow_enc.vocab_size + et.num_features + at.action_size elif not (self.is_action_mask) and self.is_emb: obs_size = self.emb.dim + self.bow_enc.vocab_size + et.num_features elif not (self.is_action_mask) and not (self.is_emb): obs_size = self.bow_enc.vocab_size + et.num_features # set network_type type if self.network_type == 'gru': self.net = GRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) elif self.network_type == 'reversed_lstm': self.net = ReversingLSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) elif self.network_type == 'reversed_gru': self.net = ReversingGRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) elif self.network_type == 'stacked_gru': self.net = StackedGRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) elif self.network_type == 'stacked_lstm': self.net = StackedLSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) elif self.network_type == 'lstm': self.net = LSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) elif self.network_type == 'bidirectional_lstm': self.net = BidirectionalLSTM(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) elif self.network_type == 'bidirectional_gru': self.net = BidirectionalGRU(obs_size=obs_size, nb_hidden=nb_hidden, action_size=action_size, lang=self.lang_type, is_action_mask=self.is_action_mask) file_path = os.path.join(rospkg.RosPack().get_path('dialogue_system'), 'log', self.network_type) # init logging self.logger = self.get_logger(file_path) msg = "'\033[94m[%s trainer]\033[0m initialized - %s (action_mask: %s, embedding: %s, lang: %s, obs_size: %s, bow: %s, context_feature: %s, action_size: %s)" % ( rospy.get_name(), self.net.__class__.__name__, self.is_action_mask, self.is_emb, self.lang_type, obs_size, self.bow_enc.vocab_size, et.num_features, action_size) rospy.loginfo(msg) def train(self, cont=False): # logging and print msg = "training started." rospy.loginfo(msg) # call previous trained model if cont: self.net.restore() epochs = 20 # start measuring time for j in range(epochs): num_tr_examples = len(self.dialog_indices_tr) loss = 0. for i, dialog_idx in enumerate(self.dialog_indices_tr): start, end = dialog_idx['start'], dialog_idx['end'] # train dialog loss += self.dialog_train(self.dataset[start:end]) sys.stdout.write('\r{}.[{}/{}]'.format(j + 1, i + 1, num_tr_examples)) # logging and print msg = '\n\n {}.tr loss {}'.format(j + 1, loss / num_tr_examples) rospy.loginfo(msg) turn_accuracy, dialog_accuracy = self.evaluate() msg = '\n{}.dev turn_accuracy {}, dialog_accuracy {}'.format( j + 1, turn_accuracy, dialog_accuracy) rospy.loginfo(msg) if dialog_accuracy > 0.999: self.net.save() break # save checkpoint self.net.save() def dialog_train(self, dialog): ################################################################### if self.lang_type == 'eng': from modules.entities import EntityTracker from modules.data_utils import Data from modules.actions import ActionTracker from modules.bow import BoW_encoder elif self.lang_type == 'kor': from modules.entities_kor import EntityTracker from modules.data_utils_kor import Data from modules.actions_kor import ActionTracker from modules.bow_kor import BoW_encoder ################################################################### et = EntityTracker() at = ActionTracker(et) # reset state in network_type self.net.reset_state() loss = 0. for (u, r) in dialog: u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_bow = self.bow_enc.encode(u) if self.is_emb: u_emb = self.emb.encode(u) if self.is_action_mask: action_mask = at.action_mask() # print(u, r) # print(u_ent_features) # print('================================') # print(u_emb) # print('================================') # print(u_bow) # print('================================') # print(action_mask) # concatenated features if self.is_action_mask and self.is_emb: features = np.concatenate( (u_ent_features, u_emb, u_bow, action_mask), axis=0) elif self.is_action_mask and not (self.is_emb): features = np.concatenate((u_ent_features, u_bow, action_mask), axis=0) elif not (self.is_action_mask) and self.is_emb: features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) elif not (self.is_action_mask) and not (self.is_emb): features = np.concatenate((u_ent_features, u_bow), axis=0) # forward propagation with cumulative loss if self.is_action_mask: loss += self.net.train_step(features, r, action_mask) else: loss += self.net.train_step(features, r) return loss / len(dialog) def evaluate(self, eval=False): ################################################################### if self.lang_type == 'eng': from modules.entities import EntityTracker from modules.data_utils import Data from modules.actions import ActionTracker from modules.bow import BoW_encoder elif self.lang_type == 'kor': from modules.entities_kor import EntityTracker from modules.data_utils_kor import Data from modules.actions_kor import ActionTracker from modules.bow_kor import BoW_encoder ################################################################### et = EntityTracker() at = ActionTracker(et) # only for evaluation purpose if eval: self.net.restore() # reset entities extractor turn_accuracy = 0. dialog_accuracy = 0. for dialog_idx in self.dialog_indices_dev: start, end = dialog_idx['start'], dialog_idx['end'] dialog = self.dataset[start:end] num_dev_examples = len(self.dialog_indices_dev) et = EntityTracker() at = ActionTracker(et) # reset network_type before evaluate. self.net.reset_state() correct_examples = 0 for (u, r) in dialog: u_ent = et.extract_entities(u) u_ent_features = et.context_features() u_bow = self.bow_enc.encode(u) if self.is_emb: u_emb = self.emb.encode(u) if self.is_action_mask: action_mask = at.action_mask() # concatenated features if self.is_action_mask and self.is_emb: features = np.concatenate( (u_ent_features, u_emb, u_bow, action_mask), axis=0) elif self.is_action_mask and not (self.is_emb): features = np.concatenate( (u_ent_features, u_bow, action_mask), axis=0) elif not (self.is_action_mask) and self.is_emb: features = np.concatenate((u_ent_features, u_emb, u_bow), axis=0) elif not (self.is_action_mask) and not (self.is_emb): features = np.concatenate((u_ent_features, u_bow), axis=0) if self.is_action_mask: probs, prediction = self.net.forward(features, action_mask) else: probs, prediction = self.net.forward(features) correct_examples += int(prediction == r) turn_accuracy += correct_examples / len(dialog) accuracy = correct_examples / len(dialog) if (accuracy == 1.0): dialog_accuracy += 1 turn_accuracy = turn_accuracy / num_dev_examples dialog_accuracy = dialog_accuracy / num_dev_examples return turn_accuracy, dialog_accuracy def get_logger(self, filename): """Return a logger instance that writes in filename Args: filename: (string) path to log.txt Returns: logger: (instance of logger) """ logger = logging.getLogger('logger') logger.setLevel(logging.DEBUG) logging.basicConfig(format='%(message)s', level=logging.DEBUG) handler = logging.FileHandler(filename) handler.setLevel(logging.DEBUG) handler.setFormatter( logging.Formatter('%(asctime)s:%(levelname)s: %(message)s')) logging.getLogger().addHandler(handler) return logger