def module_main(ctx): try: #Inizialization print(SEPARATOR) print('Saving Database!') #Read Parameters params = read_params() save_database(params['Database'], params['Path'], params['Filename'], to_text=params['Save to text']) #Finalization print('Object analysis was run successfully!') print(SEPARATOR) except IOError as e: print("Warning: Failed to write to file!!", file=sys.stderr) print(str(e), file=sys.stderr) except Exception as e: error("Error occured while executing '" + str(ctx.type()) + "' module '" + str(ctx.name()) + "' !", exception=e)
def module_main(ctx): try: #Inizialization tstart = time.clock() print(SEPARATOR) print('Colocalization analysis started!') #Read Parameters print('Reading input parameters!') params = read_params() output = colocalize(params['ChA Image'], params['ChB Image'], params['ChA'], params['ChB'], params['Ovl'], params['Path'], to_text=params['to_text'], remove_filtered=params['remove_filtered']) a3.outputs['Overlapping Image'] = output[0].to_multidimimage() a3.outputs['Overlapping Binary'] = VividImage( output[0].image > 0, output[0].metadata).to_multidimimage() a3.outputs['Overlapping DataBase'] = output[0].database #a3.outputs['Channel A Image']=VividImage(output[1].image>0,output[1].metadata).to_multidimimage() #a3.outputs['Channel B Image']=VividImage(output[2].image>0,output[2].metadata).to_multidimimage() path = a3.Url() path.path = output[3] a3.outputs['Overlapping Path'] = path #Finalization tstop = time.clock() print('Processing finished in ' + str((tstop - tstart)) + ' seconds! ') print('Object analysis was run successfully!') print(SEPARATOR) quote(verbose=True) print(SEPARATOR) except IOError as e: print("Warning: Failed to write to file!!", file=sys.stderr) print(str(e), file=sys.stderr) except Exception as e: error("Error occured while executing '" + str(ctx.type()) + "' module '" + str(ctx.name()) + "' !", exception=e)
def module_main(ctx): try: #Inizialization tstart = time.clock() print(SEPARATOR) print('Object analysis started!') #Read Parameters print('Reading input parameters!') params = read_params() output = analyze_image(params['Source'], params['Mask'], params['Settings'], params['removeFiltered']) #Change Name in metadata #output.metadata['Name']=params['Mask'].metadata['Name']+'_tagged' #Create Output a3.outputs['Analyzed Image'] = output.to_multidimimage() a3.outputs['Analyzed Binary'] = VividImage( output.image > 0, output.metadata).to_multidimimage() a3.outputs['Analyzed Database'] = output.database #Finalization tstop = time.clock() print('Processing finished in ' + str((tstop - tstart)) + ' seconds! ') print('Object analysis was run successfully!') print(SEPARATOR) except Exception as e: raise error("Error occured while executing '" + str(ctx.type()) + "' module '" + str(ctx.name()) + "' !", exception=e)
def module_main(ctx): try: filename = a3.inputs['FileName'].path #Inizialization tstart = time.clock() print(SEPARATOR) print('Loading the following image: ', filename) #Load and reshape image img = VividImage.load(filename, file_type='ome') img.reorder('XYZCT') #Print important image parameters print_line_by_line(str(img)) #Create Output a3.outputs['Array'] = img.image a3.outputs['MetaData']=img.metadata #Add path and filename to metadata a3.outputs['MetaData']['Path']=os.path.dirname(filename) a3.outputs['MetaData']['FileName']=os.path.basename(filename) #Finalization tstop = time.clock() print('Processing finished in ' + str((tstop - tstart)) + ' seconds! ') print('Image loaded successfully!') print(SEPARATOR) except Exception as e: raise error("Error occured while executing '"+str(ctx.type())+"' module '"+str(ctx.name())+"' !",exception=e)
def module_main(ctx): try: #Inizialization tstart = time.clock() print(SEPARATOR) print('Adaptive thresholding started!') #Create Image object img = VividImage.from_multidimimage(a3.inputs['Input Image']) #Get method and mode method = METHODS[a3.inputs['Method'][-1]] #Run thresholding output_img = adaptive_threshold(img, method, blocksize=a3.inputs['BlockSize'], offset=a3.inputs['Offset']) #Change Name in metadata #output_img.metadata['Name']=img.metadata['Name']+'_adaptive_thr' #Set output a3.outputs['Output Image'] = output_img.to_multidimimage() #Finalization tstop = time.clock() print('Processing finished in ' + str((tstop - tstart)) + ' seconds!') print('Adaptive thresholding was successfully!') print(SEPARATOR) except Exception as e: raise error("Error occured while executing '" + str(ctx.type()) + "' module '" + str(ctx.name()) + "' !", exception=e)
def module_main(ctx): try: #Inizialization tstart = time.clock() print(SEPARATOR) print('Thresholding started!') #Create Image object img = VividImage.from_multidimimage(a3.inputs['Input Image']) print('Thresholding: ' + img.metadata['Name']) #Get method and mode. Get kwargs if method is manual method = METHODS[a3.inputs['Method'][-1]] if method == 'Manual': kwargs = {'lower': 0, 'upper': a3.inputs['Manual threshold value']} elif method == 'None': method = 'Manual' kwargs = {'lower': 0, 'upper': 0} else: kwargs = {} if a3.inputs['Slice/Stack histogram']: kwargs['mode'] = 'Stack' else: kwargs['mode'] = 'Slice' print('Mode: ' + kwargs['mode']) print('Method: ' + method) #Run thresholding output_img = module_threshold(img, method, kwargs) #Change Name in metadata #output_img.metadata['Name']=img.metadata['Name']+'_auto_thr' #Set output a3.outputs['Thresholded Image'] = output_img.to_multidimimage() #Finalization tstop = time.clock() print('Processing finished in ' + str((tstop - tstart)) + ' seconds!') print('Autothresholding was successfully!') print(SEPARATOR) except Exception as e: raise error("Error occured while executing '" + str(ctx.type()) + "' module '" + str(ctx.name()) + "' !", exception=e)
def module_main(ctx): try: #Inizialization tstart = time.clock() print(SEPARATOR) #Load and reshape image ##TempTempTemp## img = VividImage(a3.inputs['Image'], copy.deepcopy(a3.inputs['MetaData'])) #img = Image(a3.inputs['Image'], a3.inputs['MetaData']) img.reorder('XYZCT') #Get channel from image. ch = a3.inputs['Channel'] print('Loading the following channel: ', img.metadata['Name'][ch]) if ch >= img.metadata['SizeC']: raise Exception('Image has %s channels! Invalid channel %s' % (str(img.metadata['SizeC']), str(ch))) #Check if image is time series if img.metadata['SizeT'] > 1: warning( "Image is a time series! Only the first time step will be extracted!", file=sys.stderr) #Modify metadata img.metadata['SamplesPerPixel'] = img.metadata['SamplesPerPixel'][ch] img.metadata['Name'] = img.metadata['Name'][ch] #img.metadata['Path']=filename #Create Output #Extract channel from image array a3.outputs['Channel 1'] = img.get_dimension(a3.inputs['Channel'], 'C').to_multidimimage() #to_multidimimage(Image(array.astype(np.float),copy.deepcopy(img.metadata))) #Finalization tstop = time.clock() print('Processing finished in ' + str((tstop - tstart)) + ' seconds! ') print('Image loaded successfully!') print(SEPARATOR) except Exception as e: raise error("Error occured while executing '" + str(ctx.type()) + "' module '" + str(ctx.name()) + "' !", exception=e)
def module_main(ctx): try: #Inizialization tstart = time.clock() print(SEPARATOR) #Create Image object img = VividImage.from_multidimimage(a3.inputs['Input Image']) # Creatre LogText and start logging print('Thresholding: ' + img.metadata['Name']) print('Method: Manual') #Set upper and lower threshold upper = np.amax([a3.inputs['Upper'], a3.inputs['Lower']]) lower = np.amin([a3.inputs['Upper'], a3.inputs['Lower']]) print('Settings: \n\t\tUpper:%s \n\t\tLower:%s' % (str(upper), str(lower))) #Run thresholding print('Autothresholding started!') output_img = VividImage(threshold_manual(img.array, upper, lower), img.metadata) #Set output a3.outputs['Output Image'] = output_img.to_multidimimage() #Finalization tstop = time.clock() print('Processing finished in ' + str((tstop - tstart)) + ' seconds!') print('Manual thresholding was successfully!') print(SEPARATOR) except Exception as e: raise error("Error occured while executing '" + str(ctx.type()) + "' module '" + str(ctx.name()) + "' !", exception=e)