def main(): pygame.init() screen = pygame.display.set_mode((WIDTH,HEIGHT)) #Main part is 700 pixels, I guess #Line will be 1 px #text part is the rest textPart = text_part.TextPart(((WIDTH - MAIN_WINDOW_WIDTH - 1), HEIGHT)) world = World(NODE_COLS, NODE_ROWS, (MAIN_WINDOW_WIDTH / NODE_COLS), (HEIGHT / NODE_ROWS)) running = True #Enter main loop while running: pygame.draw.line(screen, LINE_COLOR, (MAIN_WINDOW_WIDTH + 1, 0), (MAIN_WINDOW_WIDTH + 1, HEIGHT)) textPart.update_text() screen.blit(textPart.get_surface(), (MAIN_WINDOW_WIDTH + 2, 0)) world.draw(screen) pygame.display.flip() for e in pygame.event.get(): if e.type == pygame.QUIT: running = False pygame.quit() sys.exit(0) elif e.type == pygame.MOUSEBUTTONUP: textPart.selected_thing = world.underCursor(pygame.mouse.get_pos())
def __init__(self, sim): """ Printer constructor. It takes care of starting up curses, defining the data pages and setting the printer on its initial state. """ self.__sim = sim self.__color_pair_count = 0 # Initialize curses screen, instruction and proc-element list before # other private elements that depend on them. self.screen = self.__get_screen() self.inst_list = self.__get_inst_list() self.proc_elements = self.__get_proc_elements() # We can now initialize all other privates. self.__main = self.__get_main() self.__pages = self.__get_pages() self.__minimal = self.__get_minimal() self.__main_scroll = 0 self.__proc_element_scroll = 0 self.__proc_gene_scroll = 0 self.__proc_gene_view = False self.__common_buffer_scroll = 0 self.__curs_y = 0 self.__curs_x = 0 self.__print_hex = False self.size = self.screen.getmaxyx() self.current_page = "MEMORY" self.selected_proc = 0 self.selected_proc_data = (c_uint32 * len(self.proc_elements))() self.proc_list_scroll = 0 self.world = World(self, self.__sim)
def test_draw_world_in_gui(self): world = World({ Cell(0, 0, 'A'), Cell(0, 0, 'B'), Cell(0, 0, 'C'), Cell(0, 0, 'D'), }) gui = Gui() gui.set_args(0, 0, 10, 10) gui.draw(world)
import tkinter as tk import PIL import PIL.Image, PIL.ImageTk import cv2 as cv world = World({ Cell(0, 0, 'B'), Cell(1, 1, 'B'), Cell(1, 2, 'B'), Cell(0, 2, 'B'), Cell(-1, 2, 'B'), Cell(4, 5, 'C'), Cell(4, 4, 'C'), Cell(2, 4, 'C'), Cell(3, 4, 'C'), Cell(-1, -1, 'A'), Cell(-2, -1, 'A'), Cell(0, -1, 'A'), Cell(-3, -1, 'D'), Cell(-4, -1, 'D'), Cell(-5, -1, 'D'), Cell(-6, -1, 'D'), # Cell(-0, -5, 'A'), # Cell(-7, -1, 'A'), }) gui = Gui(20) class Application(tk.Frame): def __init__(self, master=None):
class App: player = None def __init__(self): # override the standard sys output to redirect the typical built-in print() command sys.stdout.write = self.print_redirect self.next_method = None self.action = None self.tag = None ########### SETUP THE GAME WINDOW FRAME ############# # Initialize the tkinter object self.root = Tk() # set window opacity self.root.attributes('-alpha', 0.90) self.root.geometry("900x650+0+0") # set the application title self.root.title("The Europa Protocol - Adventure Game") # bind an event exection on the "enter" key user event self.root.bind('<Return>', self.inputText) # Set the frame background, font color, and size of the text window self.mainframe = Text(self.root, bg='black', fg='white') self.mainframe.grid(column=0, row=0, sticky=(N, W, E, S)) # The "columnconfigure"/"rowconfigure" bits just tell Tk that if the main window is resized, the frame should expand to take up the extra space. self.mainframe.columnconfigure(0, weight=1) self.mainframe.rowconfigure(0, weight=1) ### Create the textbox for inputting commands # Declare the textbox variable self.inputline = StringVar() # initialize the textbox widget self.inputline_entry = Entry(self.root, textvariable=self.inputline) self.inputline_entry.grid(sticky=(W, E, S)) # focus the cursor in the inputline action box self.inputline_entry.focus_set() # make the application window expandable self.root.grid_columnconfigure(0, weight=1) self.root.grid_rowconfigure(0, weight=1) # initialize all the Text widget tag configurations to be used to change colors later BgColors(self.mainframe) # check to see if there is an update available for the game data self.check_state() def check_state(self): ########### CHECK IF THERE GAME NEEDS UPDATING ########## if Connection.is_connected(): up_to_date, self.download_url = Check.is_up_to_date() if not up_to_date: # this means the game version is outdated, we need to update it print( BgColors.HEADER + 'An update is available, would you like to download? [y/n]: ' + BgColors.ENDC) self.next_method = self.do_update_game else: self.begin_intro() else: self.begin_intro() def do_update_game(self, input): # if the answer is yes, the user wants to update the game data if input.lower() == 'y': try: # fire the method to get the game updates from the remote server Update.get_updates(self.root, self.download_url) # copy the game contents from the newly extracted temp dir to the installation dir Update.copy_contents(self.root) # remove the temp dir from the system to prevent unnecessary harddrive usage Update.destroy_env(self.root) print(BgColors.OKGREEN + "Update successful." + BgColors.ENDC) print("Restarting game...") self.root.update() # wait long enough for the user to read all the log entries from the update time.sleep(3) # reload the game so the new version is being used Update.reload_game() # exit current version sys.exit() except Exception as e: print(BgColors.FAIL + "Updated failed, check service logs for details." + BgColors.ENDC) self.root.update() self.begin_intro() def begin_intro(self): self.print_intro() # attempt to load previous game state, or create new game state if no previous is found self.load_game_state() def inputText(self, event, player=None): if (self.player and Health.is_alive(self.player)) or not player: # get the text from the input box i = self.inputline.get().lower().strip() # delete the contents from the input box self.inputline_entry.delete(0, 'end') # send the contents of the input box to the print function print("\n" + BgColors.NORMAL + "Your Action: " + i) # execute the next method in line, set by previous call self.next_method(i) def print_redirect(self, inputStr): # set an empty tag tuple #tag = ('NORMAL',) tag = None if BgColors.HEADER in inputStr: tag = ('HEADER', ) elif BgColors.OKBLUE in inputStr: tag = ('OKBLUE', ) elif BgColors.SKYBLUE in inputStr: tag = ('SKYBLUE', ) elif BgColors.CADETBLUE in inputStr: tag = ('CADETBLUE', ) elif BgColors.OKGREEN in inputStr: tag = ('OKGREEN', ) elif BgColors.WARNING in inputStr: tag = ('WARNING', ) elif BgColors.FAIL in inputStr: tag = ('FAIL', ) elif BgColors.NORMAL in inputStr: tag = ('NORMAL', ) elif BgColors.ENDC in inputStr: tag = () if not tag and self.tag: tag = self.tag self.tag = tag # replace reference to [color] and [endc] identifier in text string inputStr = re.sub(r'(\[!\w+!])', '', inputStr) # add the text to the window widget self.mainframe.configure(state='normal') self.mainframe.insert("end-1c", inputStr, tag) self.mainframe.configure(state='disabled') # automtically scroll to the end of the mainframe window self.mainframe.see(END) def load_game_state(self): # check if there is a game save file with a previously saved state if os.path.exists('gsave.pkl'): # prompt the user to answer if they want to load from a saved state #action_input = input( BgColors.HEADER + 'Load Saved Game? [y/n]: ' + BgColors.ENDC).lower() print(BgColors.HEADER + 'Load Saved Game? [y/n]: ' + BgColors.ENDC) self.next_method = self.load_game_state_check # otherwise a save file was not found else: # create the world state from scratch self.create_new_world() def load_game_state_check(self, input): # if the answer is yes, they want to load from the previous save, then attempt to load if input.lower() == 'y': # open the save state file with open('gsave.pkl', 'r') as output: # assign player object as the pickled object, decoded self.player = jsonpickle.decode(output.read()) # assign the world object as the player.world property self.world = self.player.world self.load_starting_position() # if the user answered no, they do not want to load from saved state, then start a new game and load all objects with original states elif input.lower() == 'n': self.create_new_world() # if the user didn't answer with a yes or no response, then loop again with an error message elif input.lower() not in ['y', 'n']: print("{}You must provide a [y/n] answer!{}".format( BgColors.FAIL, BgColors.ENDC)) self.load_game_state() def create_new_world(self): self.world = World() self.player = Player(self.world) self.load_starting_position() def load_starting_position(self): # These lines load the starting room and display the text self.player.room = self.world.tile_exists(self.player.location_x, self.player.location_y) # print the room intro text #print(re.sub(r'(^[ \t]+|[ \t]+(?=:))', '', "\n" + BgColors.NORMAL + self.player.room.intro_text() + BgColors.ENDC, flags=re.M)) print(BgColors.NORMAL + "─" * 70) print(BgColors.NORMAL + "\n" + self.player.room.intro_text() + BgColors.ENDC) self.world.tile_exists(self.player.location_x, self.player.location_y).visited = True # start the main play execution sequence self.play() def play(self): # check if the player is alive, end game if not if not Health.is_alive(self.player): State.game_end() # if player is alive, and has not achieved victory, then continue with main logic elif not self.player.victory: # The first thing the loop does is find out what room the player is in and then executes the behavior for that room. self.player.room = self.world.tile_exists(self.player.location_x, self.player.location_y) if not (isinstance( self.action, (actions.ItemAction, actions.HiddenAction))) and ( (issubclass(self.player.room.__class__, tiles.EnemyRoom) and isinstance(self.action, actions.Attack)) or issubclass(self.player.room.__class__, tiles.LeaveCaveRoom)): self.player.room.modify_player(self.player) # display the mini help options for available options (not extended help view) #if not isinstance(self.action, actions.HiddenAction): #self.player.help() kwargs = { 'actions': actions, 'available_actions': self.player.room.available_actions(self.player) } aHelp.help(**kwargs) # prompt the user to input an action #print(BgColors.HEADER + '\n\nAction: ' + BgColors.ENDC, end='') self.next_method = self.do_action_check self.inputline_entry.focus() def do_action_check(self, input): # get the available actions for the room from the available actions method in each tile class available_actions = self.player.room.available_actions(self.player) action_found = False for action in available_actions: # If the human player provided a matching hotkey, then we execute the associated action using the do_action method. if input.strip().split(' ')[0] in action.hotkey: action_found = True # if there is a space in the command input, then split the content on the space, and use the second item as the key/index passed to the action command if len(input.split(' ', 1)) > 1: action.kwargs.update({'item': input.split(' ')[1]}) # this must mean an additional argument was passed, like a keycode to follow the usage of a keypad if len(input.split(' ')) > 2: action.kwargs.update({'code': input.split(' ')[2]}) action.kwargs.update({ 'player': self.player, 'actions': actions, 'actions_list': actions.Action.get_actions(), 'available_actions': self.player.room.available_actions(self.player), 'tiles': tiles }) # set the instance action attribute for use in other class methods self.action = action print("\n" + BgColors.NORMAL + "─" * 70) #self.player.do_action(action, **action.kwargs) # Now we need to allow the Player class to take an Action and run the action`s internally-bound method. #def do_action(self, action, *args, **kwargs): #action_method = getattr(self, action.method.__name__) #if action_method: #action_method(*args, **kwargs) action.method(**action.kwargs) break # if the action was not found in the available action list if not action_found: self.action = None print("\n" + BgColors.NORMAL + "─" * 70) print( "{}You can't do that! Choose an action from the list below.\nExample: '[command] [#]' to interact with an item.{}" .format(BgColors.FAIL, BgColors.ENDC)) #self.player.help() # execute the self.play() iteration again to maintain the loop self.play() def print_intro(self): print(""" _____ _ _____ ____ _ _ |_ _| |__ ___ | ____| _ _ __ ___ _ __ __ _ | _ \ _ __ ___ | |_ ___ ___ ___ | | | | | '_ \ / _ \ | _|| | | | '__/ _ \| '_ \ / _` | | |_) | '__/ _ \| __/ _ \ / __/ _ \| | | | | | | | __/ | |__| |_| | | | (_) | |_) | (_| | | __/| | | (_) | || (_) | (_| (_) | | |_| |_| |_|\___| |_____\__,_|_| \___/| .__/ \__,_| |_| |_| \___/ \__\___/ \___\___/|_| |_| {}Copyright (C) 2015 Corey Farmer This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. Type '?' to view a full list of available actions and ways to interact within the game. """.format(BgColors.CADETBLUE))
def create_new_world(self): self.world = World() self.player = Player(self.world) self.load_starting_position()
def test_set_arggs_method(self): world = World() gui = Gui() gui.set_args(0, 0, 10, 10)
class Printer: ESCAPE_KEY = 27 def __init__(self, sim): """ Printer constructor. It takes care of starting up curses, defining the data pages and setting the printer on its initial state. """ self.__sim = sim self.__color_pair_count = 0 # Initialize curses screen, instruction and proc-element list before # other private elements that depend on them. self.screen = self.__get_screen() self.inst_list = self.__get_inst_list() self.proc_elements = self.__get_proc_elements() # We can now initialize all other privates. self.__main = self.__get_main() self.__pages = self.__get_pages() self.__minimal = self.__get_minimal() self.__main_scroll = 0 self.__proc_element_scroll = 0 self.__proc_gene_scroll = 0 self.__proc_gene_view = False self.__common_buffer_scroll = 0 self.__curs_y = 0 self.__curs_x = 0 self.__print_hex = False self.size = self.screen.getmaxyx() self.current_page = "MEMORY" self.selected_proc = 0 self.selected_proc_data = (c_uint32 * len(self.proc_elements))() self.proc_list_scroll = 0 self.world = World(self, self.__sim) def __del__(self): """ Printer destructor exits curses. """ curses.endwin() def get_color_pair(self, fg, bg=-1): """ We use this method to set new color pairs, keeping track of the number of pairs already set. We return the new color pair ID. """ self.__color_pair_count += 1 curses.init_pair(self.__color_pair_count, fg, bg) return self.__color_pair_count def get_cmd(self): """ This returns the pressed key from the curses handler. It's called during the simulation's main loop. Flushing input is important when in non-blocking mode. """ ch = self.screen.getch() curses.flushinp() return ch def set_nodelay(self, nodelay): """ Toggles between blocking and non-blocking mode on curses. """ self.screen.nodelay(nodelay) def toggle_hex(self): """ Toggle between decimal or hexadecimal printing of all simulation state elements. """ self.__print_hex = not self.__print_hex def on_resize(self): """ Called whenever the terminal window gets resized. """ self.size = self.screen.getmaxyx() self.scroll_main() self.world.zoom_reset() def flip_page(self, offset): """ Change data page by given offset (i.e. '1' for next page or '-1' for previous one). """ pidx = list(self.__pages.keys()).index(self.current_page) pidx = (pidx + offset) % len(self.__pages) self.current_page = list(self.__pages.keys())[pidx] self.scroll_main() def scroll_main(self, offset=0): """ Scrolling is allowed whenever the current page does not fit inside the terminal window. This method gets called, with no offset, under certain situations, like changing pages, just to make sure the screen gets cleared and at least some of the data is always scrolled into view. """ self.screen.clear() len_main = len(self.__main) len_page = len(self.__pages[self.current_page]) max_scroll = (len_main + len_page + 5) - self.size[0] self.__main_scroll += offset self.__main_scroll = max(0, min(self.__main_scroll, max_scroll)) def proc_scroll_left(self): """ Scroll process data elements or genomes (on PROCESS view) to the left. """ if self.current_page == "PROCESS": if self.__proc_gene_view: self.__proc_gene_scroll -= 1 self.__proc_gene_scroll = max(0, self.__proc_gene_scroll) else: self.__proc_element_scroll -= 1 self.__proc_element_scroll = max(0, self.__proc_element_scroll) def proc_scroll_right(self): """ Scroll process data elements or genomes (on PROCESS view) to the right. """ if self.current_page == "PROCESS": if self.__proc_gene_view: self.__proc_gene_scroll += 1 else: self.__proc_element_scroll += 1 max_scroll = len(self.proc_elements) - 1 self.__proc_element_scroll = min(max_scroll, self.__proc_element_scroll) def comm_scroll_left(self): """ Scroll buffers (on COMMON view) to the left. """ if self.current_page == "COMMON": self.__common_buffer_scroll -= 1 self.__common_buffer_scroll = max(0, self.__common_buffer_scroll) def comm_scroll_right(self): """ Scroll buffers (on COMMON view) to the right. """ if self.current_page == "COMMON": self.__common_buffer_scroll += 1 def proc_scroll_down(self, fast=False): """ Scroll process data table (on PROCESS view) up. """ if self.current_page == "PROCESS": if fast: len_page = len(self.__main) + len(self.__pages["PROCESS"]) + 6 scroll = max(0, self.size[0] - len_page) else: scroll = 1 self.proc_list_scroll = max(0, self.proc_list_scroll - scroll) def proc_scroll_up(self, fast=False): """ Scroll process data table (on PROCESS view) down. """ if self.current_page == "PROCESS": if fast: len_page = len(self.__main) + len(self.__pages["PROCESS"]) + 6 scroll = max(0, self.size[0] - len_page) else: scroll = 1 self.proc_list_scroll = min( self.__sim.lib.sal_proc_get_capacity() - 1, self.proc_list_scroll + scroll) def proc_scroll_to(self, proc_id): """ Scroll process data table (on PROCESS view) to a specific position. """ if self.current_page == "PROCESS": if proc_id < self.__sim.lib.sal_proc_get_capacity(): self.proc_list_scroll = proc_id else: raise RuntimeError("Error: scrolling to invalid process") def proc_scroll_vertical_reset(self): """ Scroll process data table (on PROCESS view) back to top. """ if self.current_page == "PROCESS": self.proc_list_scroll = 0 def proc_scroll_horizontal_reset(self): """ Scroll process data or genome table (on PROCESS view) back to the left. """ if self.current_page == "PROCESS": if self.__proc_gene_view: self.__proc_gene_scroll = 0 else: self.__proc_element_scroll = 0 def comm_scroll_horizontal_reset(self): """ Scroll common in and out buffers back to the left. """ if self.current_page == "COMMON": self.__common_buffer_scroll = 0 def proc_select_prev(self): """ Select previous process. """ if self.current_page in ["PROCESS", "WORLD"]: self.selected_proc -= 1 self.selected_proc %= self.__sim.lib.sal_proc_get_capacity() def proc_select_next(self): """ Select next process. """ if self.current_page in ["PROCESS", "WORLD"]: self.selected_proc += 1 self.selected_proc %= self.__sim.lib.sal_proc_get_capacity() def proc_select_first(self): """ Select first process on reaper queue. """ if self.current_page in ["PROCESS", "WORLD"]: if self.__sim.lib.sal_proc_get_count(): self.selected_proc = self.__sim.lib.sal_proc_get_first() def proc_select_last(self): """ Select last process on reaper queue. """ if self.current_page in ["PROCESS", "WORLD"]: if self.__sim.lib.sal_proc_get_count(): self.selected_proc = self.__sim.lib.sal_proc_get_last() def proc_select_by_id(self, proc_id): """ Select process from given ID. """ if proc_id < self.__sim.lib.sal_proc_get_capacity(): self.selected_proc = proc_id else: raise RuntimeError("Error: attempting to select non-existing proc") def proc_scroll_to_selected(self): """ Scroll WORLD or PROCESS page so that selected process becomes visible. """ if self.current_page == "PROCESS": self.proc_list_scroll = self.selected_proc elif self.current_page == "WORLD": if not self.__sim.lib.sal_proc_is_free(self.selected_proc): index = self.proc_elements.index("mb1a") address = self.selected_proc_data[index] self.world.scroll_to(address) def proc_toggle_gene_view(self): """ Toggle between data element or genome view on PROCESS page. """ if self.current_page == "PROCESS": self.__proc_gene_view = not self.__proc_gene_view def run_cursor(self): """ We can toggle a visible cursor on WORLD view to aid us in selecting processes. """ if self.current_page == "WORLD" and self.size[1] > World.PADDING: curses.curs_set(True) while True: self.__curs_y = max(0, min(self.__curs_y, self.size[0] - 1)) self.__curs_x = max(World.PADDING, min(self.__curs_x, self.size[1] - 1)) self.screen.move(self.__curs_y, self.__curs_x) cmd = self.screen.getch() if cmd in [ord("c"), curses.KEY_RESIZE, self.ESCAPE_KEY]: self.on_resize() break elif cmd == curses.KEY_LEFT: self.__curs_x -= 1 elif cmd == curses.KEY_RIGHT: self.__curs_x += 1 elif cmd == curses.KEY_DOWN: self.__curs_y += 1 elif cmd == curses.KEY_UP: self.__curs_y -= 1 elif cmd == ord("\n"): self.__proc_select_by_cursor() break curses.curs_set(False) def run_console(self): """ Run the Salis console. You can use the console to control all main aspects of the simulation, like compiling genomes into memory, creating or killing organisms, setting auto-save interval, among other stuff. """ # Print a pythonic prompt. self.__print_line(self.size[0] - 1, ">>> ", scroll=False) self.screen.refresh() # Create the console child window. We turn it into a Textbox object in # order to allow line-editing and extract output easily. console = curses.newwin(1, self.size[1] - 5, self.size[0] - 1, 5) textbox = curses.textpad.Textbox(console, insert_mode=True) textbox.stripspaces = True # Grab a copy of the console history and instantiate a pointer to the # last element. history = self.__sim.handler.console_history + [""] pointer = len(history) - 1 # Nested method reinserts recorded commands from history into console. def access_history(cmd): nonlocal pointer if pointer == len(history) - 1: history[-1] = console.instr().strip() if cmd == "up" and pointer != 0: pointer -= 1 elif cmd == "down" and pointer < len(history) - 1: pointer += 1 console.clear() console.addstr(0, 0, history[pointer]) console.refresh() # Declare custom validator to control special commands. def validator(cmd): EXIT = 7 if cmd in [curses.KEY_RESIZE, self.ESCAPE_KEY]: console.clear() return EXIT # Provide general code for back-space key, in case it's not # correctly defined. elif cmd in [127, curses.KEY_BACKSPACE]: return curses.KEY_BACKSPACE elif cmd == curses.KEY_UP: access_history("up") elif cmd == curses.KEY_DOWN: access_history("down") else: return cmd # Run the Textbox object with our custom validator. curses.curs_set(True) output = textbox.edit(validator) curses.curs_set(False) # Finally, extract data from console and send to handler. Respond to # any possible resize event here. self.__sim.handler.handle_console(output) self.screen.clear() self.on_resize() def show_console_error(self, message): """ Shows Salis console error messages, if any. These messages might contain actual python exception output. """ self.__print_line(self.size[0] - 1, ">>>", curses.color_pair(self.__pair_error) | curses.A_BOLD) self.screen.refresh() # We also use a Textbox object, just so that execution gets halted # until a key gets pressed (even on non-blocking mode). console = curses.newwin(1, self.size[1] - 5, self.size[0] - 1, 5) textbox = curses.textpad.Textbox(console) # Curses may raise an exception if printing on the edge of the screen; # we can just ignore it. try: console.addstr( 0, 0, message, curses.color_pair(self.__pair_error) | curses.A_BOLD) except curses.error: pass # Custom validator simply exits on any key. def validator(cmd): EXIT = 7 return EXIT textbox.edit(validator) self.screen.clear() self.on_resize() def print_page(self): """ Print current page to screen. We use the previously generated '__pages' dictionary to easily associate a label to a Salis function. """ # If in minimal mode, print only minial widget. if self.__sim.minimal: self.__print_minimal() return # Update selected proc data if in WORLD view. if self.current_page == "WORLD": self.__sim.lib.sal_proc_get_proc_data( self.selected_proc, cast(self.selected_proc_data, POINTER(c_uint32))) # Print MAIN simulation data. self.__print_line( 1, "SALIS[{}]".format(self.__sim.args.file), curses.color_pair(self.__pair_header) | curses.A_BOLD) self.__print_widget(2, self.__main) # Print data of currently selected page. main_lines = len(self.__main) + 3 self.__print_header(main_lines, self.current_page) self.__print_widget(main_lines + 1, self.__pages[self.current_page]) # Print special widgets (WORLD view and PROCESS list). if self.current_page == "WORLD": self.world.render() elif self.current_page == "PROCESS": self.__print_proc_list() elif self.current_page == "COMMON": self.__print_common_data() ############################### # Private methods ############################### def __set_colors(self): """ Define the color pairs for the data printer. """ curses.start_color() curses.use_default_colors() self.__pair_header = self.get_color_pair(curses.COLOR_BLUE) self.__pair_selected = self.get_color_pair(curses.COLOR_YELLOW) self.__pair_error = self.get_color_pair(curses.COLOR_RED) def __get_screen(self): """ Prepare and return the main curses window. We also set a shorter delay when responding to a pressed escape key. """ # Set a shorter delay to the ESCAPE key, so that we may use it to exit # Salis. os.environ.setdefault("ESCDELAY", "25") # Prepare curses screen. screen = curses.initscr() curses.noecho() curses.cbreak() screen.keypad(True) curses.curs_set(False) # We need color support in order to run the printer module. if curses.has_colors(): self.__set_colors() else: raise RuntimeError("Error: no color support.") return screen def __get_inst_list(self): """ Parse instruction set from C header file named 'instset.h'. We're using the keyword 'SALIS_INST' to identify an instruction definition, so be careful not to use this keyword anywhere else on the headers. """ inst_list = [] inst_file = os.path.join(self.__sim.path, "../include/instset.h") with open(inst_file, "r") as f: lines = f.read().splitlines() for line in lines: if line and line.split()[0] == "SALIS_INST": inst_name = line.split()[1][:4] inst_symb = line.split()[3] inst_list.append((inst_name, inst_symb)) return inst_list def __get_proc_elements(self): """ Parse process structure member variables from C header file named 'process.h'. We're using the keyword 'SALIS_PROC_ELEMENT' to identify element declarations, so be careful not to use this keyword anywhere else on the headers. """ proc_elem_list = [] proc_elem_file = os.path.join(self.__sim.path, "../include/process.h") with open(proc_elem_file, "r") as f: lines = f.read().splitlines() for line in lines: if line and line.split()[0] == "SALIS_PROC_ELEMENT": proc_elem_name = line.split()[2].split(";")[0] if proc_elem_name == "stack[8]": # The stack is a special member variable, an array. We # translate it by returning a list of stack identifiers. proc_elem_list += ["stack[{}]".format(i) for i in range(8)] else: # We can assume all other struct elements are single # variables. proc_elem_list.append(proc_elem_name) return proc_elem_list def __get_main(self): """ Generate main set of data fields to be printed. We associate, on a list object, a label to each Salis function to be called. The following elements get printed on all pages. """ return [ ("e", "cycle", self.__sim.lib.sal_main_get_cycle), ("e", "epoch", self.__sim.lib.sal_main_get_epoch), ("e", "state", lambda: self.__sim.state), ("e", "autosave", lambda: self.__sim.autosave), ] def __get_pages(self): """ Generate data fields to be printed on each page. We associate, on a list object, a label to each Salis function to be called. Each list represents a PAGE. We initialize all pages inside an ordered dictionary object. """ # The following comprehensions build up widgets to help up print sets # of data elements. The use of nested lambdas is needed to receive # updated values. # Instruction counter widget: inst_widget = [ ("e", inst[0], (lambda j: (lambda: self.__sim.lib.sal_mem_get_inst_count(j)))(i)) for i, inst in enumerate(self.inst_list) ] # Evolver module state widget: state_widget = [("e", "state[{}]".format(i), (lambda j: (lambda: self.__sim.lib.sal_evo_get_state(j)))(i)) for i in range(4)] # Selected process state widget: selected_widget = [ ("p", element, (lambda j: (lambda: self.selected_proc_data[j]))(i)) for i, element in enumerate(self.proc_elements) ] # With the help of the widgets above, we can declare the PAGES # dictionary object. return OrderedDict([ ("MEMORY", [ ("e", "order", self.__sim.lib.sal_mem_get_order), ("e", "size", self.__sim.lib.sal_mem_get_size), ("e", "allocated", self.__sim.lib.sal_mem_get_allocated), ("s", ""), ("h", "INSTRUCTIONS"), ] + inst_widget), ("EVOLVER", [ ("e", "last", self.__sim.lib.sal_evo_get_last_changed_address), ("e", "calls", self.__sim.lib.sal_evo_get_calls_on_last_cycle), ] + state_widget), ("PROCESS", [ ("e", "count", self.__sim.lib.sal_proc_get_count), ("e", "capacity", self.__sim.lib.sal_proc_get_capacity), ("e", "first", self.__sim.lib.sal_proc_get_first), ("e", "last", self.__sim.lib.sal_proc_get_last), ("e", "selected", lambda: self.selected_proc), ]), ("COMMON", [ ("e", "in", lambda: len(self.__sim.common.in_buffer)), ("e", "out", lambda: len(self.__sim.common.out_buffer)), ("e", "max", lambda: self.__sim.common.max_buffer_size), ]), ("WORLD", [ ("e", "position", lambda: self.world.pos), ("e", "zoom", lambda: self.world.zoom), ("e", "selected", lambda: self.selected_proc), ("s", ""), ("h", "SELECTED PROC"), ] + selected_widget), ]) def __print_line(self, ypos, line, attrs=curses.A_NORMAL, scroll=True): """ Print a single line on screen only when it's visible. """ if scroll: ypos -= self.__main_scroll if 0 <= ypos < self.size[0]: # Curses raises an exception each time we print on the screen's # edge. We can just catch and ignore it. try: line = line[:self.size[1] - 1] self.screen.addstr(ypos, 1, line, attrs) except curses.error: pass def __print_header(self, ypos, line): """ Print a bold header. """ header_attr = curses.A_BOLD | curses.color_pair(self.__pair_header) self.__print_line(ypos, line, header_attr) def __print_value(self, ypos, element, value, attr=curses.A_NORMAL): """ Print a label:value pair. """ if type(value) == int: if value == ((2**32) - 1): # In Salis, UINT32_MAX is used to represent NULL. We print NULL # as three dashes. value = "---" elif self.__print_hex: value = hex(value) line = "{:<10} : {:>10}".format(element, value) self.__print_line(ypos, line, attr) def __print_proc_element(self, ypos, element, value): """ Print elements of currently selected process. We highlight in YELLOW if the selected process is running. """ if self.__sim.lib.sal_proc_is_free(self.selected_proc): attr = curses.A_NORMAL else: attr = curses.color_pair(self.__pair_selected) self.__print_value(ypos, element, value, attr) def __print_widget(self, ypos, widget): """ Print a widget (data PAGE) on screen. """ for i, element in enumerate(widget): if element[0] == "s": continue elif element[0] == "h": self.__print_header(i + ypos, element[1]) elif element[0] == "e": self.__print_value(i + ypos, element[1], element[2]()) elif element[0] == "p": self.__print_proc_element(i + ypos, element[1], element[2]()) def __clear_line(self, ypos): """ Clear the specified line. """ if 0 <= ypos < self.size[0]: self.screen.move(ypos, 0) self.screen.clrtoeol() def __data_format(self, x): """ Print all proc IDs and elements in decimal or hexadecimal format, depending on hex-flag being set. """ if self.__print_hex: return hex(x) else: return x def __print_proc_data_list(self): """ Print list of process data elements in PROCESS page. We can toggle between printing the data elements or the genomes by pressing the 'g' key. """ # First, print the table header, by extracting element names from the # previously generated proc element list. ypos = len(self.__main) + len(self.__pages["PROCESS"]) + 5 header = " | ".join(["{:<10}".format("pidx")] + [ "{:>10}".format(element) for element in self.proc_elements[self.__proc_element_scroll:] ]) self.__clear_line(ypos) self.__print_header(ypos, header) ypos += 1 proc_id = self.proc_list_scroll # Lastly, iterate all lines and print as much process data as it fits. # We can scroll the process data table using the 'wasd' keys. while ypos < self.size[0]: self.__clear_line(ypos) if proc_id < self.__sim.lib.sal_proc_get_capacity(): if proc_id == self.selected_proc: # Always highlight the selected process. attr = curses.color_pair(self.__pair_selected) else: attr = curses.A_NORMAL # Retrieve a copy of the selected process state and store it in # a list object. proc_data = (c_uint32 * len(self.proc_elements))() self.__sim.lib.sal_proc_get_proc_data( proc_id, cast(proc_data, POINTER(c_uint32))) # Lastly, assemble and print the next table row. row = " | ".join( ["{:<10}".format(self.__data_format(proc_id))] + [ "{:>10}".format(self.__data_format(element)) for element in proc_data[self.__proc_element_scroll:] ]) self.__print_line(ypos, row, attr) proc_id += 1 ypos += 1 def __print_proc_gene_block(self, ypos, gidx, xpos, mbs, mba, ip, sp, pair): """ Print a sub-set of a process genome. Namely, on of its two memory blocks. """ while gidx < mbs and xpos < self.size[1]: gaddr = mba + gidx if gaddr == ip: attr = curses.color_pair(self.world.pair_sel_ip) elif gaddr == sp: attr = curses.color_pair(self.world.pair_sel_sp) else: attr = curses.color_pair(pair) # Retrieve instruction from memory and transform it to correct # symbol. inst = self.__sim.lib.sal_mem_get_inst(gaddr) symb = self.inst_list[inst][1] # Curses raises an exception each time we print on the screen's # edge. We can just catch and ignore it. try: self.screen.addstr(ypos, xpos, symb, attr) except curses.error: pass gidx += 1 xpos += 1 return xpos def __print_proc_gene(self, ypos, proc_id): """ Print a single process genome on the genome table. We use the same colors to represent memory blocks, IP and SP of each process, as those used to represent the selected process on WORLD view. """ # There's nothing to print if process is free. if self.__sim.lib.sal_proc_is_free(proc_id): return # Process is alive. Retrieve a copy of the current process state and # store it in a list object. proc_data = (c_uint32 * len(self.proc_elements))() self.__sim.lib.sal_proc_get_proc_data( proc_id, cast(proc_data, POINTER(c_uint32))) # Let's extract all data of interest. mb1a = proc_data[self.proc_elements.index("mb1a")] mb1s = proc_data[self.proc_elements.index("mb1s")] mb2a = proc_data[self.proc_elements.index("mb2a")] mb2s = proc_data[self.proc_elements.index("mb2s")] ip = proc_data[self.proc_elements.index("ip")] sp = proc_data[self.proc_elements.index("sp")] # Always print MAIN memory block (mb1) first (on the left side). That # way we can keep most of our attention on the parent. xpos = self.__print_proc_gene_block(ypos, self.__proc_gene_scroll, 14, mb1s, mb1a, ip, sp, self.world.pair_sel_mb1) # Reset gene counter and print child memory block, if it exists. if mb1s < self.__proc_gene_scroll: gidx = self.__proc_gene_scroll - mb1s else: gidx = 0 self.__print_proc_gene_block(ypos, gidx, xpos, mb2s, mb2a, ip, sp, self.world.pair_sel_mb2) def __print_proc_gene_list(self): """ Print list of process genomes in PROCESS page. We can toggle between printing the genomes or the data elements by pressing the 'g' key. """ # First, print the table header. We print the current gene-scroll # position for easy reference. Return back to zero scroll with the 'A' # key. ypos = len(self.__main) + len(self.__pages["PROCESS"]) + 5 header = "{:<10} | genes {} -->".format( "pidx", self.__data_format(self.__proc_gene_scroll)) self.__clear_line(ypos) self.__print_header(ypos, header) ypos += 1 proc_id = self.proc_list_scroll # Iterate all lines and print as much genetic data as it fits. We can # scroll the gene data table using the 'wasd' keys. while ypos < self.size[0]: self.__clear_line(ypos) if proc_id < self.__sim.lib.sal_proc_get_capacity(): if proc_id == self.selected_proc: # Always highlight the selected process. attr = curses.color_pair(self.__pair_selected) else: attr = curses.A_NORMAL # Assemble and print the next table row. row = "{:<10} |".format(self.__data_format(proc_id)) self.__print_line(ypos, row, attr) self.__print_proc_gene(ypos, proc_id) proc_id += 1 ypos += 1 def __print_buffer(self, ypos, buff): """ Print contents of a network buffer as a list of instruction symbols. """ if not ypos < self.size[0]: return if not len(buff): self.__print_line(ypos, "---") return xpos = 1 bpos = self.__common_buffer_scroll self.__clear_line(ypos) while xpos < self.size[1] - 1 and bpos < len(buff): symbol = self.inst_list[int(buff[bpos])][1] self.screen.addstr(ypos, xpos, symbol) xpos += 1 bpos += 1 def __print_common_widget(self, ypos_s, ypos_b, head_s, head_b, sockets, buff, sources=False): """ Print data pertaining input or output network buffers, sources and targets. """ self.__print_header(ypos_s, head_s) # Socket info is stored differently for input and output. if sources: fmt_sock = lambda s: "{} {}".format(*s.getsockname()) else: fmt_sock = lambda s: "{} {}".format(*s) # Print active socket list. if sockets: for socket in sockets: ypos_s += 1 self.__print_line(ypos_s, fmt_sock(socket)) else: self.__print_line(ypos_s + 1, "---") # Print current contents of the network buffer. self.__clear_line(ypos_b) self.__print_header( ypos_b, "{:<10} | {} -->".format( head_b, self.__data_format(self.__common_buffer_scroll))) self.__clear_line(ypos_b + 1) self.__print_buffer(ypos_b + 1, buff) def __print_common_data(self): """ Print active socket list and network buffer data. """ ypos_src = len(self.__main) + len(self.__pages["COMMON"]) + 5 ypos_tgt = ypos_src + max(3, len(self.__sim.common.sources) + 2) ypos_ibf = ypos_tgt + max(3, len(self.__sim.common.targets) + 2) ypos_obf = ypos_ibf + 3 self.__print_common_widget( ypos_src, ypos_ibf, "SOURCES", "IN BUFFER", self.__sim.common.sources, self.__sim.common.in_buffer, sources=True, ) self.__print_common_widget( ypos_tgt, ypos_obf, "TARGETS", "OUT BUFFER", self.__sim.common.targets, self.__sim.common.out_buffer, ) def __print_proc_list(self): """ Print list of process genomes or process data elements in PROCESS page. We can toggle between printing the genomes or the data elements by pressing the 'g' key. """ if self.__proc_gene_view: self.__print_proc_gene_list() else: self.__print_proc_data_list() def __proc_select_by_cursor(self): """ Select process located on address under cursor, if any exists. """ # First, calculate address under cursor. ypos = self.__curs_y xpos = self.__curs_x - World.PADDING line_size = self.size[1] - World.PADDING address = self.world.pos + (( (ypos * line_size) + xpos) * self.world.zoom) # Now, iterate all living processes and try to find one that owns the # calculated address. if self.__sim.lib.sal_mem_is_address_valid(address): for proc_id in range(self.__sim.lib.sal_proc_get_capacity()): if not self.__sim.lib.sal_proc_is_free(proc_id): proc_data = (c_uint32 * len(self.proc_elements))() self.__sim.lib.sal_proc_get_proc_data( proc_id, cast(proc_data, POINTER(c_uint32))) mb1a = proc_data[self.proc_elements.index("mb1a")] mb1s = proc_data[self.proc_elements.index("mb1s")] mb2a = proc_data[self.proc_elements.index("mb2a")] mb2s = proc_data[self.proc_elements.index("mb2s")] if (mb1a <= address < (mb1a + mb1s) or mb2a <= address < (mb2a + mb2s)): self.selected_proc = proc_id break def __get_minimal(self): """ Generate set of data fields to be printed on minimal mode. """ return [ ("cycle", self.__sim.lib.sal_main_get_cycle), ("epoch", self.__sim.lib.sal_main_get_epoch), ("procs", self.__sim.lib.sal_proc_get_count), ] def __print_minimal(self): """ Print minimal mode data fields. """ self.__print_line(1, "Salis - Mini mode") for i, field in enumerate(self.__minimal): field_1 = self.__data_format(field[1]()) self.__print_line(i + 3, "{}: {:>10}".format(field[0], field_1))