示例#1
0
def conv2d(layer):
    h, w = layer.get_config()['kernel_size']
    d = layer.input_shape[-1]
    n = layer.output_shape[-1]
    s0, s1 = layer.get_config()['strides']
    W = layer.get_weights()[0]
    B = layer.get_weights()[1]
    module = modules.Convolution(filtersize=(h, w, d, n), stride=(s0, s1))
    module.W = W
    module.B = B
    activation_module = get_activation_lrpmodule(layer.activation)
    return module, activation_module
示例#2
0
def roar_kar(keep, random=False, train_only=False):

    logdir = 'tf_logs/standard/'

    def get_savedir():

        savedir = logdir.replace('tf_logs', 'KAR' if keep else 'ROAR')

        if not os.path.exists(savedir):

            os.makedirs(savedir)

        return savedir


#     ratio = 0.1

    percentiles = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
    attribution_methods = ['normal', 'LRP', 'proposed_method']

    if not train_only:
        DNN = model_io.read('../models/MNIST/LeNet-5.nn')
        for v in attribution_methods:
            batch_size = 128
            print("{} Step is start".format(v))
            if random:
                print("{} percentile Remove".format(v))
                occlude_dataset(DNN=DNN,
                                attribution=v,
                                percentiles=percentiles,
                                random=True,
                                keep=keep,
                                batch_size=batch_size,
                                savedir=get_savedir())
            else:
                print("{} Random Remove".format(v))
                occlude_dataset(DNN=DNN,
                                attribution=v,
                                percentiles=percentiles,
                                random=False,
                                keep=keep,
                                batch_size=batch_size,
                                savedir=get_savedir())
            print("{} : occlude step is done".format(v))
        print("ress record")
    ress = {k: [] for k in attribution_methods}

    for _ in range(3):

        for v in attribution_methods:

            res = []

            for p in percentiles:

                occdir = get_savedir() + '{}_{}_{}.pickle'.format('{}', v, p)
                occdir_y = get_savedir() + '{}_{}_{}_{}.pickle'.format(
                    '{}', v, p, 'label')

                data_train = unpickle(occdir.format('train'))
                #                 data_test = unpickle(occdir.format('test'))
                Xtrain = np.array(data_train)
                Ytrain = unpickle(occdir_y.format('train'))
                Ytrain = np.array(Ytrain)
                Xtest = data_io.read('../data/MNIST/test_images.npy')
                Ytest = data_io.read('../data/MNIST/test_labels.npy')
                print("check : {}".format(Ytrain.shape))

                Xtest = scale(Xtest)
                Xtest = np.reshape(Xtest, [Xtest.shape[0], 28, 28, 1])
                Xtest = np.pad(Xtest, ((0, 0), (2, 2), (2, 2), (0, 0)),
                               'constant',
                               constant_values=(-1., ))
                Ix = Ytest[:, 0].astype(int)
                Ytest = np.zeros([Xtest.shape[0], np.unique(Ytest).size])
                Ytest[np.arange(Ytest.shape[0]), Ix] = 1
                print(occdir)

                #                 DNN = model_io.read('../models/MNIST/LeNet-5.nn')

                DNN = modules.Sequential([
                                modules.Convolution(filtersize=(5,5,1,10),stride = (1,1)),\
                                modules.Rect(),\
                                modules.SumPool(pool=(2,2),stride=(2,2)),\
                                modules.Convolution(filtersize=(5,5,10,25),stride = (1,1)),\
                                modules.Rect(),\
                                modules.SumPool(pool=(2,2),stride=(2,2)),\
                                modules.Convolution(filtersize=(4,4,25,100),stride = (1,1)),\
                                modules.Rect(),\
                                modules.SumPool(pool=(2,2),stride=(2,2)),\
                                modules.Convolution(filtersize=(1,1,100,10),stride = (1,1)),\
                                modules.Flatten()
                            ])
                print("training...")
                DNN.train(X=Xtrain,\
                    Y=Ytrain,\
                    Xval=Xtest,\
                    Yval=Ytest,\
                    iters=10**5,\
                    lrate=0.0001,\
#                     status = 2,\
                    batchsize = 128
                         )
                #                 ypred = DNN.forward(Xtest)

                acc = np.mean(
                    np.argmax(DNN.forward(Xtest), axis=1) == np.argmax(Ytest,
                                                                       axis=1))
                del DNN
                print('metric model test accuracy is: {:0.4f}'.format(acc))

                res.append(acc)
            print("End of {}:training, accuracy...".format(_))

            ress[v].append(res)
    print("metric...")
    res_mean = {v: np.mean(v, axis=0) for v in ress.item()}

    print(res_mean)

    return res_mean
示例#3
0
Xtest = np.pad(Xtest, ((0, 0), (2, 2), (2, 2), (0, 0)),
               'constant',
               constant_values=(-1., ))

#transform numeric class labels to indicator vectors.
I = Ytrain[:, 0].astype(int)
Ytrain = np.zeros([Xtrain.shape[0], np.unique(Ytrain).size])
Ytrain[np.arange(Ytrain.shape[0]), I] = 1

I = Ytest[:, 0].astype(int)
Ytest = np.zeros([Xtest.shape[0], np.unique(Ytest).size])
Ytest[np.arange(Ytest.shape[0]), I] = 1

#model a network according to LeNet-5 architecture
lenet = modules.Sequential([
                            modules.Convolution(filtersize=(5,5,1,10),stride = (1,1)),\
                            modules.Rect(),\
                            modules.SumPool(pool=(2,2),stride=(2,2)),\
                            modules.Convolution(filtersize=(5,5,10,25),stride = (1,1)),\
                            modules.Rect(),\
                            modules.SumPool(pool=(2,2),stride=(2,2)),\
                            modules.Convolution(filtersize=(4,4,25,100),stride = (1,1)),\
                            modules.Rect(),\
                            modules.SumPool(pool=(2,2),stride=(2,2)),\
                            modules.Convolution(filtersize=(1,1,100,10),stride = (1,1)),\
                            modules.Flatten()
                        ])

#train the network.
lenet.train(   X=Xtrain,\
                Y=Ytrain,\