def LATITUDE(instanceCLASS): instanceCLASS = val(instanceCLASS) instanceCLASS = instanceCLASS.split() # convert to list instanceRES = pd.DataFrame(instanceCLASS, columns=['CODDEPAL']) COOR_DEP2["CODDEPAL"] = COOR_DEP2["CODDEPAL"].astype('object') COOR_DEP2["CODDEPAL"] = COOR_DEP2["CODDEPAL"].apply( lambda x: prepare_text.formatingText(x)) COOR_DEP2["CODDEPAL"] = COOR_DEP2["CODDEPAL"].apply( lambda x: prepare_text.deletestopwords(x)) COOR_DEP2['CODDEPAL'] = COOR_DEP2['CODDEPAL'].astype(str) COOR_DEP2["CODDEPAL"] = COOR_DEP2["CODDEPAL"].apply( lambda x: prepare_text.formatingText(x)) #COOR_DEP2.head(3) instanceRES = pd.merge(instanceRES, COOR_DEP2, on='CODDEPAL') #instanceRES lat = instanceRES['DEPlatitude'][0] return lat
def MODELOREGION(inst, loaded_model): instanceCLASS = '' if pd.notnull(inst): # Se limpia el texto para ingresar al modelo inst = prepare_text.formatingText(inst) inst = prepare_text.deletestopwords(inst) inst = ' '.join(inst) #inst = formatingText(inst) inst = prepare_text.onlyWORDS(inst, stop_mundep) inst = ' '.join(inst) instance = inst ###### CARGAR AL MODELO LAS PALABRAS instance_pred = loaded_model.predict( newprediction(instance, 9, tokenizer)) instance_pred = prepare_text.convertprobtobin(instance_pred, 0.30) instanceCLASS = lemod.inverse_transform(instance_pred) instanceCLASS = str(instanceCLASS).strip('[()]') instanceCLASS = prepare_text.formatingText(instanceCLASS) return instanceCLASS
def MODELODEPARTAMENTO(inst, modeloDepart): instanceCLASS = '' if pd.notnull(inst): # Se limpia el texto para ingresar al modelo inst = prepare_text.formatingText(inst) inst = prepare_text.deletestopwords(inst) inst = ' '.join(inst) #inst = formatingText(inst) inst = prepare_text.onlyWORDS(inst, stop_mundep) inst = ' '.join(inst) instance = inst ###### CARGAR AL MODELO LAS PALABRAS # instance_pred = loaded_modelDEP.predict(newpredictionDEP(instance,9,tokenizerDEP)) # modeloDepart = find_location.modelo_dep() instance_pred = modeloDepart.predict( newpredictionDEP(instance, 9, tokenizerDEP)) instance_pred = prepare_text.convertprobtobin(instance_pred, 0.30) instanceCLASS = lemodDEP.inverse_transform(instance_pred) instanceCLASS = str(instanceCLASS).strip('[()]') instanceCLASS = prepare_text.formatingText(instanceCLASS) return instanceCLASS
return lat #### CARGAR EL MODELO ## Se crean las categorias para el modelo ## Dataframe with the name of categories data = { 'CODRegionlist2': ['amazonia', 'andina', 'caribe', 'orinoquia', 'pacifico'] } df = pd.DataFrame(data, columns=['CODRegionlist2']) df["CODRegionlist2"] = df["CODRegionlist2"].astype('object') df["CODRegionlist2"] = df["CODRegionlist2"].apply( lambda x: prepare_text.formatingText(x)) df["CODRegionlist2"] = df["CODRegionlist2"].apply( lambda x: prepare_text.deletestopwords(x)) df['CODRegionlist2'] = df['CODRegionlist2'].astype(str) df['CODRegionlist2'] = df['CODRegionlist2'].map(lambda x: eval(x)) ## leer archivo spara el modelo ### CARGAR BIBLIOTECA DE MUNICIPIOS Y DEPARTAMENTO with open('ModReg/stop_mundep.txt', 'rb') as fp: list_1 = pickle.load(fp) stop_mundep = list_1 # loading CARGAR EL ARCHIVO DEL TOKENIZER with open('ModReg/tokenizermundep.pickle', 'rb') as handle: tokenizer = pickle.load(handle)