import sys import numpy as np import random import pandas as pd from dec_reprod import lvx from moead import optimize instance = int(sys.argv[1]) rep = 51 benchmarks = ["hangseng", "dax", "ftse", "sp", "nikkei"] savedir = "tmp/{}/lvx/".format(benchmarks[instance - 1]) N, T, gen = 100, 20, 1500 sigma, nr = 0.9, 2 par = [1e-05, 0.3] #print(instance, benchmarks[instance-1]) #print(par) #print("====================================") for i in range(rep): np.random.seed(500 + i) random.seed(500 + i) print("Start {}-th experiment.".format(i + 1)) res = optimize(instance, N, T, gen, lvx, par, sigma, nr, True, 100) res = pd.DataFrame(res, columns=["return", "risk"]) res.to_csv(savedir + str(i + 1) + ".csv", index=False)
import sys import numpy as np import random import pandas as pd from dec_reprod import de_normal from moead import optimize instance = int(sys.argv[1]) rep = 51 benchmarks = ["hangseng", "dax", "ftse", "sp", "nikkei"] savedir = "tmp/{}/norm/".format(benchmarks[instance-1]) N, T, gen = 100, 20, 1500 sigma, nr = 0.9, 2 par = [0.5] #print(instance, benchmarks[instance-1]) #print(par) #print("====================================") for i in range(rep): np.random.seed(500+i) random.seed(500+i) print("Start {}-th experiment.".format(i+1)) res = optimize(instance, N, T, gen, de_normal, par, sigma, nr, True, 100) res = pd.DataFrame(res, columns=["return", "risk"]) res.to_csv(savedir + str(i+1) + ".csv", index=False)
import sys import numpy as np import random import pandas as pd from dec_reprod import de_uniform from moead import optimize instance = int(sys.argv[1]) rep = 51 benchmarks = ["hangseng", "dax", "ftse", "sp", "nikkei"] savedir = "tmp/{}/unif/".format(benchmarks[instance - 1]) N, T, gen = 100, 20, 1500 sigma, nr = 0.9, 2 par = [1] #print(instance, benchmarks[instance-1]) #print(par) #print("====================================") for i in range(rep): np.random.seed(500 + i) random.seed(500 + i) print("Start {}-th experiment.".format(i + 1)) res = optimize(instance, N, T, gen, de_uniform, par, sigma, nr, True, 100) res = pd.DataFrame(res, columns=["return", "risk"]) res.to_csv(savedir + str(i + 1) + ".csv", index=False)