示例#1
0
def constructBox(x1,y1,z1,x2,y2,z2):
    """
    Creates and returns a mesh box with six quad faces.

    Arguments:
    ----------
    x1,y1,z1 : float
        The coordinates of the bottom left front corner
    x2,y2,z2 : float
        The coordinates of the top right back corner
    """
    mesh = Mesh()
    v1 = Vertex(x1, y1, z1)
    v2 = Vertex(x1, y2, z1)
    v3 = Vertex(x2, y2, z1)
    v4 = Vertex(x2, y1, z1)
    v5 = Vertex(x1, y1, z2)
    v6 = Vertex(x1, y2, z2)
    v7 = Vertex(x2, y2, z2)
    v8 = Vertex(x2, y1, z2)
    mesh.vertices = [v1, v2, v3, v4, v5, v6, v7, v8]
    f1 = Face([v1, v2, v3, v4])
    f2 = Face([v8, v7, v6, v5])
    f3 = Face([v4, v3, v7, v8])
    f4 = Face([v3, v2, v6, v7])
    f5 = Face([v2, v1, v5, v6])
    f6 = Face([v1, v4, v8, v5])
    mesh.faces = [f1, f2, f3, f4, f5, f6]
    return mesh
示例#2
0
def constructTetrahedron(cx,cy,cz,side):
    """
    Constructs a tetrahedron mesh.

    Arguments:
    ----------
    cx, cy, cz : float
        The center point of the tetrahedron
    side : float
        The edge length of the tetrahedron
    """
    mesh = Mesh()
    coord = 1 / math.sqrt(2)
    mesh.vertices = [Vertex(+1, 0, -coord),
                     Vertex(-1, 0, -coord),
                     Vertex(0, +1, +coord),
                     Vertex(0, -1, +coord)]

    for i in range(len(mesh.vertices)):
        mesh.vertices[i] = vec.scale(mesh.vertices[i], side / 2)
        mesh.vertices[i] = vec.add(mesh.vertices[i], Vertex(cx, cy, cz))

    f1 = Face([mesh.vertices[0], mesh.vertices[1], mesh.vertices[2]])
    f2 = Face([mesh.vertices[1], mesh.vertices[0], mesh.vertices[3]])
    f3 = Face([mesh.vertices[2], mesh.vertices[3], mesh.vertices[0]])
    f4 = Face([mesh.vertices[3], mesh.vertices[2], mesh.vertices[1]])

    mesh.faces = [f1, f2, f3, f4]
    return mesh
示例#3
0
def constructDodecahedron(cx,cy,cz,radius):
    """
    Constructs a dodecaheron mesh.

    Arguments:
    ----------
    cx, cy, cz : float
        The center point of the dodecaheron
    radius : float
        The radius of the containing sphere
    """
    mesh = Mesh()
    phi = (1 + 5 ** 0.5) / 2
    mesh.vertices = [Vertex( 1, 1, 1),
                Vertex( 1, 1,-1),
                Vertex( 1,-1, 1),
                Vertex( 1,-1,-1),
                Vertex(-1, 1, 1),
                Vertex(-1, 1,-1),
                Vertex(-1,-1, 1),
                Vertex(-1,-1,-1),
                Vertex(0,-phi,-1/phi),
                Vertex(0,-phi, 1/phi),
                Vertex(0, phi,-1/phi),
                Vertex(0, phi, 1/phi),
                Vertex(-phi,-1/phi,0),
                Vertex(-phi, 1/phi,0),
                Vertex( phi,-1/phi,0),
                Vertex( phi, 1/phi,0),
                Vertex(-1/phi,0,-phi),
                Vertex( 1/phi,0,-phi),
                Vertex(-1/phi,0, phi),
                Vertex( 1/phi,0, phi)]

    for i in range(len(mesh.vertices)):
        mesh.vertices[i] = vec.scale(mesh.vertices[i], radius)
        mesh.vertices[i] = vec.add(mesh.vertices[i], Vertex(cx,cy,cz))
    indices = [2,9,6,18,19,
               4,11,0,19,18,
               18,6,12,13,4,
               19,0,15,14,2,
               4,13,5,10,11,
               14,15,1,17,3,
               1,15,0,11,10,
               3,17,16,7,8,
               2,14,3,8,9,
               6,9,8,7,12,
               1,10,5,16,17,
               12,7,16,5,13]

    for i in range(0, len(indices), 5):
        f = Face([mesh.vertices[indices[i]],
                  mesh.vertices[indices[i + 1]],
                  mesh.vertices[indices[i + 2]],
                  mesh.vertices[indices[i + 3]],
                  mesh.vertices[indices[i + 4]]])
        mesh.faces.append(f)

    return mesh
示例#4
0
def constructSingleFace(vertices):
    """
    Creates and returns a single face mesh from the vertices.

    Arguments:
    ----------
    vertices : list of mola.core.Vertex
        The vertices describing the face
    """
    mesh = Mesh()
    mesh.vertices = vertices
    mesh.faces = [Face(vertices)]
    return mesh
示例#5
0
def constructIcosahedron(cx,cy,cz,radius):
    """
    Creates and returns a mesh in the form of an icosahedron.

    Arguments:
    ----------
    cx,cy,cz : float
        The coordinates of the center point
    radius : float
        The radius of the containing sphere
    """
    mesh = Mesh()
    phi = (1 + 5 ** 0.5) / 2
    coordA = 1 / (2 * math.sin(2 * math.pi / 5))
    coordB = phi / (2 * math.sin(2 * math.pi / 5))
    mesh.vertices = [Vertex(0, -coordA, coordB),
                Vertex(coordB, 0, coordA),
                Vertex(coordB, 0, -coordA),
                Vertex(-coordB, 0, -coordA),
                Vertex(-coordB, 0, coordA),
                Vertex(-coordA, coordB, 0),
                Vertex(coordA, coordB, 0),
                Vertex(coordA, -coordB, 0),
                Vertex(-coordA, -coordB, 0),
                Vertex(0, -coordA, -coordB),
                Vertex(0, coordA, -coordB),
                Vertex(0, coordA, coordB)]

    for i in range(len(mesh.vertices)):
        mesh.vertices[i] = vec.scale(mesh.vertices[i], radius)
        mesh.vertices[i] = vec.add(mesh.vertices[i], Vertex(cx,cy,cz))

    indices = [1, 2, 6, 1, 7, 2, 3, 4, 5, 4, 3, 8, 6, 5, 11, 5, 6, 10, 9, 10, 2, 10, 9, 3, 7, 8, 9, 8, 7, 0, 11, 0, 1, 0, 11, 4, 6, 2, 10, 1, 6, 11, 3, 5, 10, 5, 4, 11, 2, 7, 9, 7, 1, 0, 3, 9, 8, 4, 8, 0]
    faces = []

    for i in range(0,len(indices),3):
        f = Face([mesh.vertices[indices[i]], mesh.vertices[indices[i + 1]], mesh.vertices[indices[i + 2]]])
        faces.append(f)
    mesh.faces = faces
    return mesh