示例#1
0
 def test_AreaAnalyst(self):
     aa = AreaAnalyst(self.r1, self.r1)
     raster = aa.getChangeMap()
     band = raster.getBand(1)
     assert_array_equal(band, self.r1r1)
     
     # Masked raster
     aa = AreaAnalyst(self.r2, self.r2)
     raster = aa.getChangeMap()  
     band = raster.getBand(1)
     assert_array_equal(band, self.r2r2)
示例#2
0
    def test_AreaAnalyst(self):
        aa = AreaAnalyst(self.r1, self.r1)
        raster = aa.getChangeMap()
        band = raster.getBand(1)
        assert_array_equal(band, self.r1r1)

        # Masked raster
        aa = AreaAnalyst(self.r2, self.r2)
        raster = aa.getChangeMap()
        band = raster.getBand(1)
        assert_array_equal(band, self.r2r2)
示例#3
0
    def sim(self):
        """
        Make 1 iteracion of simulation.
        """
        # TODO: eleminate AreaAnalyst.getChangeMap() from the process

        transition = self.crosstable.getCrosstable()

        prediction = self.getPrediction()
        state = self.getState()
        new_state = state.getBand(1).copy()  # New states (the result of simulation) will be stored there.
        analyst = AreaAnalyst(state, prediction)
        classes = analyst.classes
        changes = analyst.getChangeMap().getBand(1)

        # Make transition between classes according to
        # number of moved pixel in crosstable
        self.rangeChanged.emit(self.tr("Simulation process %p%"), len(classes) ** 2 - len(classes))
        for initClass in classes:
            for finalClass in classes:
                if initClass == finalClass:
                    continue

                # TODO: Calculate number of pixels to be moved via TransitoionMatrix and state raster
                n = transition.getTransition(
                    initClass, finalClass
                )  # Number of pixels to be moved (constant count now).
                # Find n appropriate places for transition initClass -> finalClass
                class_code = analyst.encode(initClass, finalClass)
                places = changes == class_code  # Array of places where transitions initClass -> finalClass are occured
                placesCount = np.sum(places)
                if placesCount < n:
                    self.logMessage.emit(
                        self.tr("There are more transitions in the transition matrix, then the model have found")
                    )
                    n = placesCount

                confidence = self.getConfidence().getBand(1)
                confidence = (
                    confidence * places
                )  # The higher is number in cell, the higer is probability of transition in the cell
                indices = []
                for i in range(n):
                    index = np.unravel_index(
                        confidence.argmax(), confidence.shape
                    )  # Select the cell with biggest probability
                    indices.append(index)
                    confidence[index] = -1  # Mark the cell to prevent second selection

                # Now "indices" contains indices of the appropriate places,
                # make transition initClass -> finalClass
                for index in indices:
                    new_state[index] = finalClass
                self.updateProgress.emit()

        result = Raster()
        result.create([new_state], state.getGeodata())
        self.state = result
        self.updatePrediction(result)
        self.processFinished.emit()
示例#4
0
def main(initRaster, finalRaster, factors):
    print 'Start Reading Init Data...', clock()
    initRaster = Raster(initRaster)
    finalRaster = Raster(finalRaster)
    factors = [Raster(rasterName) for rasterName in factors]
    print 'Finish Reading Init Data', clock(), '\n'

    print "Start Making CrossTable...", clock()
    crosstab = CrossTableManager(initRaster, finalRaster)
    #print crosstab.getTransitionStat()
    print "Finish Making CrossTable", clock(), '\n'

    # Create and Train Analyst
    print 'Start creating AreaAnalyst...', clock()
    analyst = AreaAnalyst(initRaster, finalRaster)
    print 'Finish creating AreaAnalyst ...', clock(), '\n'

    print 'Start Making Change Map...', clock()
    analyst = AreaAnalyst(initRaster, finalRaster)
    changeMap = analyst.getChangeMap()
    print 'Finish Making Change Map', clock(), '\n'

    #~ # Create and Train ANN Model
    model = MlpManager(ns=1)
    model.createMlp(initRaster, factors, changeMap, [10])
    print 'Start Setting MLP Trainig Data...', clock()
    model.setTrainingData(initRaster,
                          factors,
                          changeMap,
                          mode='Stratified',
                          samples=1000)
    print 'Finish Setting Trainig Data', clock(), '\n'
    print 'Start MLP Training...', clock()
    model.train(20, valPercent=20)
    print 'Finish Trainig', clock(), '\n'

    # print 'Start ANN Prediction...', clock()
    # predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    # confidence = model.getConfidence()
    # potentials = model.getTransitionPotentials()

    #~ # Create and Train LR Model
    #~ model = LR(ns=0)
    #~ print 'Start Setting LR Trainig Data...', clock()
    #~ model.setState(initRaster)
    #~ model.setFactors(factors)
    #~ model.setOutput(changeMap)
    #~ model.setMode('Stratified')
    #~ model.setSamples(100)
    #~ model.setTrainingData()
    #~ print 'Finish Setting Trainig Data', clock(), '\n'
    #~ print 'Start LR Training...', clock()
    #~ model.train()
    #~ print 'Finish Trainig', clock(), '\n'
    #~
    #~ print 'Start LR Prediction...', clock()
    #~ predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    #~ print 'Finish LR Prediction...', clock(), '\n'

    # Create and Train WoE Model
    # print 'Start creating AreaAnalyst...', clock()
    # analyst = AreaAnalyst(initRaster, finalRaster)
    # print 'Finish creating AreaAnalyst ...', clock(), '\n'
    # print 'Start creating WoE model...', clock()
    # bins = {0: [[1000, 3000]], 1: [[200, 500, 1500]]}
    # model = WoeManager(factors, analyst, bins= bins)
    # model.train()
    # print 'Finish creating WoE model...', clock(), '\n'

    #~ # Create and Train MCE Model
    #~ print 'Start creating MCE model...', clock()
    #~ matrix = [
    #~ [1,     6],
    #~ [1.0/6,   1]
    #~ ]
    #~ model = MCE(factors, matrix, 2, 3, analyst)
    #~ print 'Finish creating MCE model...', clock(), '\n'

    # predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    # confidence = model.getConfidence()
    # potentials = model.getTransitionPotentials()
    # filename = 'predict.tif'
    # confname = 'confidence.tif'
    # trans_prefix='trans_'
    # try:
    #     predict.save(filename)
    #     confidence.save(confname)
    #     if potentials != None:
    #         for k,v in potentials.iteritems():
    #             map = v.save(trans_prefix+str(k) + '.tif')
    # finally:
    #     os.remove(filename)
    #     #pass
    # print 'Finish Saving...', clock(), '\n'

    # simulation
    print 'Start Simulation...', clock()
    simulator = Simulator(initRaster, factors, model, crosstab)
    # Make 1 cycle of simulation:
    simulator.setIterationCount(1)
    simulator.simN()
    monteCarloSim = simulator.getState()  # Result of MonteCarlo simulation
    errors = simulator.errorMap(finalRaster)  # Risk class validation
    riskFunct = simulator.getConfidence()  # Risk function

    try:
        monteCarloSim.save('simulation_result.tiff')
        errors.save('risk_validation.tiff')
        riskFunct.save('risk_func.tiff')
    finally:
        pass
        # os.remove('simulation_result.tiff')
        # os.remove('risk_validation.tiff')
        # os.remove('risk_func.tiff')
    print 'Finish Simulation', clock(), '\n'

    print 'Done', clock()
示例#5
0
def main(initRaster, finalRaster, factors):
    print 'Start Reading Init Data...', clock()
    initRaster = Raster(initRaster)
    finalRaster = Raster(finalRaster)
    factors = [Raster(rasterName) for rasterName in factors]
    print 'Finish Reading Init Data', clock(), '\n'

    print "Start Making CrossTable...", clock()
    crosstab = CrossTableManager(initRaster, finalRaster)
    #print crosstab.getTransitionStat()
    print "Finish Making CrossTable", clock(), '\n'

    # Create and Train Analyst
    print 'Start creating AreaAnalyst...', clock()
    analyst = AreaAnalyst(initRaster, finalRaster)
    print 'Finish creating AreaAnalyst ...', clock(), '\n'

    print 'Start Making Change Map...', clock()
    analyst = AreaAnalyst(initRaster,finalRaster)
    changeMap = analyst.getChangeMap()
    print 'Finish Making Change Map', clock(), '\n'


    #~ # Create and Train ANN Model
    model = MlpManager(ns=1)
    model.createMlp(initRaster, factors, changeMap, [10])
    print 'Start Setting MLP Trainig Data...', clock()
    model.setTrainingData(initRaster, factors, changeMap, mode='Stratified', samples=1000)
    print 'Finish Setting Trainig Data', clock(), '\n'
    print 'Start MLP Training...', clock()
    model.train(20, valPercent=20)
    print 'Finish Trainig', clock(), '\n'
    
    # print 'Start ANN Prediction...', clock()
    # predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    # confidence = model.getConfidence()
    # potentials = model.getTransitionPotentials()

    #~ # Create and Train LR Model
    #~ model = LR(ns=0)
    #~ print 'Start Setting LR Trainig Data...', clock()
    #~ model.setState(initRaster)
    #~ model.setFactors(factors)
    #~ model.setOutput(changeMap)
    #~ model.setMode('Stratified')
    #~ model.setSamples(100)
    #~ model.setTrainingData()
    #~ print 'Finish Setting Trainig Data', clock(), '\n'
    #~ print 'Start LR Training...', clock()
    #~ model.train()
    #~ print 'Finish Trainig', clock(), '\n'
    #~
    #~ print 'Start LR Prediction...', clock()
    #~ predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    #~ print 'Finish LR Prediction...', clock(), '\n'

    # Create and Train WoE Model
    # print 'Start creating AreaAnalyst...', clock()
    # analyst = AreaAnalyst(initRaster, finalRaster)
    # print 'Finish creating AreaAnalyst ...', clock(), '\n'
    # print 'Start creating WoE model...', clock()
    # bins = {0: [[1000, 3000]], 1: [[200, 500, 1500]]}
    # model = WoeManager(factors, analyst, bins= bins)
    # model.train()
    # print 'Finish creating WoE model...', clock(), '\n'

    #~ # Create and Train MCE Model
    #~ print 'Start creating MCE model...', clock()
    #~ matrix = [
        #~ [1,     6],
        #~ [1.0/6,   1]
    #~ ]
    #~ model = MCE(factors, matrix, 2, 3, analyst)
    #~ print 'Finish creating MCE model...', clock(), '\n'

    # predict = model.getPrediction(initRaster, factors, calcTransitions=True)
    # confidence = model.getConfidence()
    # potentials = model.getTransitionPotentials()
    # filename = 'predict.tif'
    # confname = 'confidence.tif'
    # trans_prefix='trans_'
    # try:
    #     predict.save(filename)
    #     confidence.save(confname)
    #     if potentials != None:
    #         for k,v in potentials.iteritems():
    #             map = v.save(trans_prefix+str(k) + '.tif')
    # finally:
    #     os.remove(filename)
    #     #pass
    # print 'Finish Saving...', clock(), '\n'

    # simulation
    print 'Start Simulation...', clock()
    simulator = Simulator(initRaster, factors, model, crosstab)
    # Make 1 cycle of simulation:
    simulator.setIterationCount(1)
    simulator.simN()
    monteCarloSim   = simulator.getState()              # Result of MonteCarlo simulation
    errors          = simulator.errorMap(finalRaster)   # Risk class validation
    riskFunct       = simulator.getConfidence()         # Risk function

    try:
        monteCarloSim.save('simulation_result.tiff')
        errors.save('risk_validation.tiff')
        riskFunct.save('risk_func.tiff')
    finally:
        pass
        # os.remove('simulation_result.tiff')
        # os.remove('risk_validation.tiff')
        # os.remove('risk_func.tiff')
    print 'Finish Simulation', clock(), '\n'

    print 'Done', clock()