def pre_transforms(self, data=None) -> Sequence[Callable]: t = [ LoadImaged(keys="image"), AsChannelFirstd(keys="image"), Spacingd(keys="image", pixdim=[1.0] * self.dimension, mode="bilinear"), AddGuidanceFromPointsd(ref_image="image", guidance="guidance", dimensions=self.dimension), ] if self.dimension == 2: t.append(Fetch2DSliced(keys="image", guidance="guidance")) t.extend([ AddChanneld(keys="image"), SpatialCropGuidanced(keys="image", guidance="guidance", spatial_size=self.spatial_size), Resized(keys="image", spatial_size=self.model_size, mode="area"), ResizeGuidanced(guidance="guidance", ref_image="image"), NormalizeIntensityd(keys="image", subtrahend=208, divisor=388), # type: ignore AddGuidanceSignald(image="image", guidance="guidance"), EnsureTyped(keys="image", device=data.get("device") if data else None), ]) return t
def pre_transforms(self, data): return [ LoadImaged(keys="image"), AsChannelFirstd(keys="image"), Spacingd(keys="image", pixdim=[1.0, 1.0, 1.0], mode="bilinear"), AddGuidanceFromPointsd(ref_image="image", guidance="guidance", dimensions=3), AddChanneld(keys="image"), SpatialCropGuidanced(keys="image", guidance="guidance", spatial_size=self.spatial_size), Resized(keys="image", spatial_size=self.model_size, mode="area"), ResizeGuidanced(guidance="guidance", ref_image="image"), NormalizeIntensityd(keys="image", subtrahend=208, divisor=388), AddGuidanceSignald(image="image", guidance="guidance"), ]
def pre_transforms(self, data=None): return [ LoadImaged(keys="image"), AsChannelFirstd(keys="image"), Spacingd(keys="image", pixdim=[1.0, 1.0], mode="bilinear"), AddGuidanceFromPointsd(ref_image="image", guidance="guidance", dimensions=2), Fetch2DSliced(keys="image", guidance="guidance"), AddChanneld(keys="image"), SpatialCropGuidanced(keys="image", guidance="guidance", spatial_size=[256, 256]), Resized(keys="image", spatial_size=[256, 256], mode="area"), ResizeGuidanced(guidance="guidance", ref_image="image"), NormalizeIntensityd(keys="image", subtrahend=208, divisor=388), # type: ignore AddGuidanceSignald(image="image", guidance="guidance"), ]
def test_correct_results(self, arguments, input_data, expected_result): result = SpatialCropGuidanced(**arguments)(input_data) np.testing.assert_allclose(result["image"], expected_result)