示例#1
0
    def compute(self):
        _prediction_tensor = torch.cat(self._predictions, dim=0)
        _target_tensor = torch.cat(self._targets, dim=0)

        if dist.is_available() and dist.is_initialized(
        ) and not self._is_reduced:
            # create placeholder to collect the data from all processes:
            output = [
                torch.zeros_like(_prediction_tensor)
                for _ in range(dist.get_world_size())
            ]
            dist.all_gather(output, _prediction_tensor)
            _prediction_tensor = torch.cat(output, dim=0)
            output = [
                torch.zeros_like(_target_tensor)
                for _ in range(dist.get_world_size())
            ]
            dist.all_gather(output, _target_tensor)
            _target_tensor = torch.cat(output, dim=0)
            self._is_reduced = True

        return compute_roc_auc(
            y_pred=_prediction_tensor,
            y=_target_tensor,
            to_onehot_y=self.to_onehot_y,
            softmax=self.softmax,
            other_act=self.other_act,
            average=self.average,
        )
示例#2
0
 def _compute_fn(pred, label):
     return compute_roc_auc(
         y_pred=pred,
         y=label,
         to_onehot_y=to_onehot_y,
         softmax=softmax,
         other_act=other_act,
         average=Average(average),
     )
示例#3
0
 def test_value(self, y_pred, y, softmax, to_onehot, average,
                expected_value):
     y_pred_trans = Compose([ToTensor(), Activations(softmax=softmax)])
     y_trans = Compose([ToTensor(), AsDiscrete(to_onehot=to_onehot)])
     y_pred = torch.stack(
         [y_pred_trans(i) for i in decollate_batch(y_pred)], dim=0)
     y = torch.stack([y_trans(i) for i in decollate_batch(y)], dim=0)
     result = compute_roc_auc(y_pred=y_pred, y=y, average=average)
     np.testing.assert_allclose(expected_value, result, rtol=1e-5)
示例#4
0
 def compute(self):
     _prediction_tensor = torch.cat(self._predictions, dim=0)
     _target_tensor = torch.cat(self._targets, dim=0)
     return compute_roc_auc(
         y_pred=_prediction_tensor,
         y=_target_tensor,
         to_onehot_y=self.to_onehot_y,
         softmax=self.softmax,
         other_act=self.other_act,
         average=self.average,
     )
示例#5
0
    def compute(self):
        _prediction_tensor = torch.cat(self._predictions, dim=0)
        _target_tensor = torch.cat(self._targets, dim=0)

        if dist.is_available() and dist.is_initialized(
        ) and not self._is_reduced:
            _prediction_tensor = all_gather(_prediction_tensor)
            _target_tensor = all_gather(_target_tensor)
            self._is_reduced = True

        return compute_roc_auc(
            y_pred=_prediction_tensor,
            y=_target_tensor,
            to_onehot_y=self.to_onehot_y,
            softmax=self.softmax,
            other_act=self.other_act,
            average=self.average,
        )
示例#6
0
文件: train.py 项目: wyli/tutorials
def run_eval(model, val_dataloader, cfg, writer, epoch):

    model.eval()
    torch.set_grad_enabled(False)

    # store information for evaluation
    val_losses = []

    if cfg.compute_auc is True:
        val_preds = []
        val_targets = []

    for batch in val_dataloader:
        batch = cfg.to_device_transform(batch)
        if cfg.mixed_precision:
            with autocast():
                output = model(batch)
        else:
            output = model(batch)

        val_losses += [output["loss"]]
        if cfg.compute_auc is True:
            val_preds += [output["logits"].sigmoid()]
            val_targets += [batch["target"]]

    val_losses = torch.stack(val_losses)
    val_losses = val_losses.cpu().numpy()
    val_loss = np.mean(val_losses)

    if cfg.compute_auc is True:

        val_preds = torch.cat(val_preds)
        val_targets = torch.cat(val_targets)
        val_preds = val_preds.cpu().numpy().astype(np.float32)
        val_targets = val_targets.cpu().numpy().astype(np.float32)
        avg_auc = compute_roc_auc(val_preds, val_targets, average="macro")
        writer.add_scalar("val_avg_auc", avg_auc, epoch)

    writer.add_scalar("val_loss", val_loss, epoch)

    return val_loss
示例#7
0
 def compute(self):
     _prediction_tensor = torch.cat(self._predictions, dim=0)
     _target_tensor = torch.cat(self._targets, dim=0)
     return compute_roc_auc(_prediction_tensor, _target_tensor,
                            self.to_onehot_y, self.softmax, self.average)
示例#8
0
def main():
    monai.config.print_config()
    logging.basicConfig(stream=sys.stdout, level=logging.INFO)

    # IXI dataset as a demo, downloadable from https://brain-development.org/ixi-dataset/
    images = [
        "/workspace/data/medical/ixi/IXI-T1/IXI314-IOP-0889-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI249-Guys-1072-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI609-HH-2600-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI173-HH-1590-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI020-Guys-0700-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI342-Guys-0909-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI134-Guys-0780-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI577-HH-2661-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI066-Guys-0731-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI130-HH-1528-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI607-Guys-1097-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI175-HH-1570-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI385-HH-2078-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI344-Guys-0905-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI409-Guys-0960-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI584-Guys-1129-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI253-HH-1694-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI092-HH-1436-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI574-IOP-1156-T1.nii.gz",
        "/workspace/data/medical/ixi/IXI-T1/IXI585-Guys-1130-T1.nii.gz",
    ]
    # 2 binary labels for gender classification: man and woman
    labels = np.array(
        [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0])
    train_files = [{
        "img": img,
        "label": label
    } for img, label in zip(images[:10], labels[:10])]
    val_files = [{
        "img": img,
        "label": label
    } for img, label in zip(images[-10:], labels[-10:])]

    # Define transforms for image
    train_transforms = Compose([
        LoadNiftid(keys=["img"]),
        AddChanneld(keys=["img"]),
        ScaleIntensityd(keys=["img"]),
        Resized(keys=["img"], spatial_size=(96, 96, 96)),
        RandRotate90d(keys=["img"], prob=0.8, spatial_axes=[0, 2]),
        ToTensord(keys=["img"]),
    ])
    val_transforms = Compose([
        LoadNiftid(keys=["img"]),
        AddChanneld(keys=["img"]),
        ScaleIntensityd(keys=["img"]),
        Resized(keys=["img"], spatial_size=(96, 96, 96)),
        ToTensord(keys=["img"]),
    ])

    # Define dataset, data loader
    check_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    check_loader = DataLoader(check_ds,
                              batch_size=2,
                              num_workers=4,
                              pin_memory=torch.cuda.is_available())
    check_data = monai.utils.misc.first(check_loader)
    print(check_data["img"].shape, check_data["label"])

    # create a training data loader
    train_ds = monai.data.Dataset(data=train_files, transform=train_transforms)
    train_loader = DataLoader(train_ds,
                              batch_size=2,
                              shuffle=True,
                              num_workers=4,
                              pin_memory=torch.cuda.is_available())

    # create a validation data loader
    val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
    val_loader = DataLoader(val_ds,
                            batch_size=2,
                            num_workers=4,
                            pin_memory=torch.cuda.is_available())

    # Create DenseNet121, CrossEntropyLoss and Adam optimizer
    device = torch.device("cuda:0")
    model = monai.networks.nets.densenet.densenet121(
        spatial_dims=3,
        in_channels=1,
        out_channels=2,
    ).to(device)
    loss_function = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), 1e-5)

    # start a typical PyTorch training
    val_interval = 2
    best_metric = -1
    best_metric_epoch = -1
    writer = SummaryWriter()
    for epoch in range(5):
        print("-" * 10)
        print(f"epoch {epoch + 1}/{5}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data["img"].to(
                device), batch_data["label"].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            epoch_len = len(train_ds) // train_loader.batch_size
            print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
            writer.add_scalar("train_loss", loss.item(),
                              epoch_len * epoch + step)
        epoch_loss /= step
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                y_pred = torch.tensor([], dtype=torch.float32, device=device)
                y = torch.tensor([], dtype=torch.long, device=device)
                for val_data in val_loader:
                    val_images, val_labels = val_data["img"].to(
                        device), val_data["label"].to(device)
                    y_pred = torch.cat([y_pred, model(val_images)], dim=0)
                    y = torch.cat([y, val_labels], dim=0)

                acc_value = torch.eq(y_pred.argmax(dim=1), y)
                acc_metric = acc_value.sum().item() / len(acc_value)
                auc_metric = compute_roc_auc(y_pred,
                                             y,
                                             to_onehot_y=True,
                                             add_softmax=True)
                if acc_metric > best_metric:
                    best_metric = acc_metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(), "best_metric_model.pth")
                    print("saved new best metric model")
                print(
                    "current epoch: {} current accuracy: {:.4f} current AUC: {:.4f} best accuracy: {:.4f} at epoch {}"
                    .format(epoch + 1, acc_metric, auc_metric, best_metric,
                            best_metric_epoch))
                writer.add_scalar("val_accuracy", acc_metric, epoch + 1)
    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )
    writer.close()
示例#9
0
def run_training_test(root_dir,
                      train_x,
                      train_y,
                      val_x,
                      val_y,
                      device="cuda:0",
                      num_workers=10):

    monai.config.print_config()
    # define transforms for image and classification
    train_transforms = Compose([
        LoadPNG(image_only=True),
        AddChannel(),
        ScaleIntensity(),
        RandRotate(range_x=np.pi / 12, prob=0.5, keep_size=True),
        RandFlip(spatial_axis=0, prob=0.5),
        RandZoom(min_zoom=0.9, max_zoom=1.1, prob=0.5),
        ToTensor(),
    ])
    train_transforms.set_random_state(1234)
    val_transforms = Compose(
        [LoadPNG(image_only=True),
         AddChannel(),
         ScaleIntensity(),
         ToTensor()])

    # create train, val data loaders
    train_ds = MedNISTDataset(train_x, train_y, train_transforms)
    train_loader = DataLoader(train_ds,
                              batch_size=300,
                              shuffle=True,
                              num_workers=num_workers)

    val_ds = MedNISTDataset(val_x, val_y, val_transforms)
    val_loader = DataLoader(val_ds, batch_size=300, num_workers=num_workers)

    model = densenet121(spatial_dims=2,
                        in_channels=1,
                        out_channels=len(np.unique(train_y))).to(device)
    loss_function = torch.nn.CrossEntropyLoss()
    optimizer = torch.optim.Adam(model.parameters(), 1e-5)
    epoch_num = 4
    val_interval = 1

    # start training validation
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    model_filename = os.path.join(root_dir, "best_metric_model.pth")
    for epoch in range(epoch_num):
        print("-" * 10)
        print(f"Epoch {epoch + 1}/{epoch_num}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch + 1} average loss:{epoch_loss:0.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                y_pred = torch.tensor([], dtype=torch.float32, device=device)
                y = torch.tensor([], dtype=torch.long, device=device)
                for val_data in val_loader:
                    val_images, val_labels = val_data[0].to(
                        device), val_data[1].to(device)
                    y_pred = torch.cat([y_pred, model(val_images)], dim=0)
                    y = torch.cat([y, val_labels], dim=0)
                auc_metric = compute_roc_auc(y_pred,
                                             y,
                                             to_onehot_y=True,
                                             softmax=True)
                metric_values.append(auc_metric)
                acc_value = torch.eq(y_pred.argmax(dim=1), y)
                acc_metric = acc_value.sum().item() / len(acc_value)
                if auc_metric > best_metric:
                    best_metric = auc_metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(), model_filename)
                    print("saved new best metric model")
                print(
                    f"current epoch {epoch +1} current AUC: {auc_metric:0.4f} "
                    f"current accuracy: {acc_metric:0.4f} best AUC: {best_metric:0.4f} at epoch {best_metric_epoch}"
                )
    print(
        f"train completed, best_metric: {best_metric:0.4f}  at epoch: {best_metric_epoch}"
    )
    return epoch_loss_values, best_metric, best_metric_epoch
示例#10
0
文件: roc_auc.py 项目: zimaxeg/MONAI
 def compute(self):
     return compute_roc_auc(self._predictions, self._targets,
                            self.to_onehot_y, self.add_softmax,
                            self.average)
示例#11
0
def engine(loader: Any, checkpoint: Dict[str, Any], batchsize: int,
           classes: int, reg_args: Any, is_train: bool):

    overall_loss = []
    all_preds = torch.zeros((0, classes)).cuda()
    all_labels = torch.zeros((0, classes)).cuda()
    start = time.time()
    sigmoid = torch.nn.Sigmoid()

    with torch.set_grad_enabled(is_train):
        for iter_num, data in enumerate(loader):
            imgs = data[0].cuda().float()
            labels = data[1].cuda().float()

            predicted = checkpoint['model'](imgs)
            loss = checkpoint['criterion'](predicted, labels)

            if is_train:
                loss.backward()
                checkpoint['optimizer'].step()
                checkpoint['optimizer'].zero_grad()

            overall_loss.append(float(loss.item()))
            all_preds = torch.cat((predicted.detach(), all_preds))
            all_labels = torch.cat((labels.detach(), all_labels))

            speed = batchsize * iter_num // (time.time() - start)
            print('Epoch:',
                  checkpoint['epoch'],
                  'Iter:',
                  iter_num,
                  'Running loss:',
                  round(np.mean(overall_loss), 3),
                  'Speed:',
                  int(speed),
                  'img/s',
                  end='\r',
                  flush=True)

    loss = np.mean(overall_loss)
    if reg_args is None:
        rmetric = compute_roc_auc(all_preds, all_labels, other_act=sigmoid)
        sens = compute_confusion_metric(all_preds,
                                        all_labels,
                                        activation=sigmoid,
                                        metric_name='sensitivity')
        spec = compute_confusion_metric(all_preds,
                                        all_labels,
                                        activation=sigmoid,
                                        metric_name='specificity')
        summary = (
            f'Epoch Summary- Loss:{round(loss, 3)}  ROC:{round(rmetric * 100, 1)} '
            +
            f'Sensitivity:{round(100 * sens, 1)}  Specificity: {round(100 * spec, 1)}'
        )
    else:
        error_range = reg_args['error_range']
        all_labels = [((x * reg_args['max']) + reg_args['min']).item()
                      for x in all_labels]
        all_preds = [((x * reg_args['max']) + reg_args['min']).item()
                     for x in all_preds]
        rmetric = r2_score(all_labels, all_preds)
        a1 = regression_accuracy(all_labels, all_preds, error_range)
        a2 = regression_accuracy(all_labels, all_preds, error_range)
        summary = (
            f'Epoch Summary- Loss:{round(loss, 3)}  R2:{round(rmetric, 1)} ' +
            f'Accuracy at {error_range}:{round(100 * a1, 1)} ' +
            f'Accuracy at {(error_range * 2)}:{round(100 * a2, 1)}')

    print(summary)
    with open('/mnt/out/summary.txt', 'w') as f:
        f.write('Loss:{}\nROC:{}\nSensitivity:{}\nSpecificity:{}'.format(
            round(loss, 3), round(rmetric * 100, 1), round(100 * sens, 1),
            round(100 * spec, 1)))

    return loss, rmetric, summary
示例#12
0
        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                y_pred = torch.tensor([], dtype=torch.float32, device=device)
                y = torch.tensor([], dtype=torch.long, device=device)
                for val_data in val_loader:
                    val_images, val_labels = (
                        val_data[0].to(device),
                        val_data[1].to(device),
                    )
                    y_pred = torch.cat([y_pred, model(val_images)], dim=0)
                    y = torch.cat([y, val_labels], dim=0)
                y_onehot = to_onehot(y)
                y_pred_act = act(y_pred)
                auc_metric = compute_roc_auc(y_pred_act, y_onehot)
                del y_pred_act, y_onehot
                metric_values.append(auc_metric)
                acc_value = torch.eq(y_pred.argmax(dim=1), y)
                acc_metric = acc_value.sum().item() / len(acc_value)
                if auc_metric > best_metric:
                    best_metric = auc_metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(),
                               os.path.join(root_dir, "best_metric_model.pth"))
                    print("saved new best metric model")
                print(
                    f"current epoch: {epoch + 1} current AUC: {auc_metric:.4f}"
                    f" current accuracy: {acc_metric:.4f}"
                    f" best AUC: {best_metric:.4f}"
                    f" at epoch: {best_metric_epoch}")
示例#13
0
def engine(loader: Any, checkpoint: Dict[str, Any], batchsize: int,
           classes: int, variable_type: str, error_range: int, is_train: bool):

    overall_loss = []
    all_preds = torch.zeros((0, classes))
    all_labels = torch.zeros((0, classes))
    labels_onehot = torch.FloatTensor(batchsize, classes).cuda()
    start = time.time()
    sigmoid = torch.nn.Sigmoid()

    with torch.set_grad_enabled(is_train):
        for iter_num, data in enumerate(loader):
            # name = data[0]
            imgs = data[1].cuda().float()
            labels = data[2].cuda()

            predicted = checkpoint['model'](imgs)
            loss = checkpoint['criterion'](predicted, labels)
            predicted, labels = predicted.detach(), labels.detach()

            if is_train:
                loss.backward()
                checkpoint['optimizer'].step()
                checkpoint['optimizer'].zero_grad()

            overall_loss.append(float(loss.item()))
            all_preds = torch.cat((predicted, all_preds))

            if variable_type == 'categorical':
                if labels_onehot.shape[0] != labels.shape[0]:
                    labels_onehot = torch.FloatTensor(labels.shape[0],
                                                      classes).cuda()
                labels_onehot.zero_()
                labels_onehot.scatter_(1, labels.unsqueeze(dim=1), 1)
                all_labels = torch.cat((labels_onehot.float(), all_labels))
                predicted = predicted.max(dim=1)[1]  # for correct printing
            else:
                all_labels = torch.cat((labels, all_labels))

            speed = batchsize * iter_num // (time.time() - start)
            print('Epoch:',
                  checkpoint['epoch'],
                  'Iter:',
                  iter_num,
                  'Pred:',
                  round(predicted.float().mean().item(), 3),
                  'Label:',
                  round(labels.float().mean().item(), 3),
                  'Loss:',
                  round(np.mean(overall_loss), 3),
                  'Speed:',
                  int(speed),
                  'img/s',
                  end='\r',
                  flush=True)

    loss = np.mean(overall_loss)
    if variable_type == 'continous':
        all_labels, all_preds = all_labels.cpu(), all_preds.cpu()
        rmetric = r2_score(all_labels, all_preds)
        acc = regression_accuracy(all_labels, all_preds, error_range)
        spear, pvalue = spearmanr(all_preds, all_labels)
        summary = (
            f'Epoch Summary - Loss:{round(loss, 3)} Spearman:{round(spear, 2)} PValue:{round(pvalue, 3)} '
            +
            f'R2:{round(rmetric, 1)} Accuracy(at {error_range}):{round(100 * acc, 1)}'
        )

    else:
        rmetric = compute_roc_auc(all_preds, all_labels, other_act=sigmoid)
        sens = compute_confusion_metric(all_preds,
                                        all_labels,
                                        activation=sigmoid,
                                        metric_name='sensitivity')
        spec = compute_confusion_metric(all_preds,
                                        all_labels,
                                        activation=sigmoid,
                                        metric_name='specificity')
        summary = (
            f'Epoch Summary- Loss:{round(loss, 3)}  ROC:{round(rmetric * 100, 1)} '
            +
            f'Sensitivity:{round(100 * sens, 1)}  Specificity: {round(100 * spec, 1)}'
        )

    print(summary)
    return loss, rmetric, summary
示例#14
0
def train(train_loader,
          optimizer,
          loss_function,
          epoch_num,
          model_name,
          output_dir="."):
    best_metric = -1
    best_metric_epoch = -1
    epoch_loss_values = list()
    metric_values = list()
    for epoch in range(epoch_num):
        print('-' * 10)
        print(f"epoch {epoch + 1}/{epoch_num}")
        model.train()
        epoch_loss = 0
        step = 0
        for batch_data in train_loader:
            step += 1
            inputs, labels = batch_data[0].to(device), batch_data[1].to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = loss_function(outputs, labels)
            loss.backward()
            optimizer.step()
            epoch_loss += loss.item()
            print(
                f"{step}/{len(train_ds) // train_loader.batch_size}, train_loss: {loss.item():.4f}"
            )
            epoch_len = len(train_ds) // train_loader.batch_size
        epoch_loss /= step
        epoch_loss_values.append(epoch_loss)
        print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

        if (epoch + 1) % val_interval == 0:
            model.eval()
            with torch.no_grad():
                y_pred = torch.tensor([], dtype=torch.float32, device=device)
                y = torch.tensor([], dtype=torch.long, device=device)
                for val_data in val_loader:
                    val_images, val_labels = val_data[0].to(
                        device), val_data[1].to(device)
                    y_pred = torch.cat([y_pred, model(val_images)], dim=0)
                    y = torch.cat([y, val_labels], dim=0)
                auc_metric = compute_roc_auc(y_pred,
                                             y,
                                             to_onehot_y=True,
                                             softmax=True)
                metric_values.append(auc_metric)
                acc_value = torch.eq(y_pred.argmax(dim=1), y)
                acc_metric = acc_value.sum().item() / len(acc_value)
                if auc_metric > best_metric:
                    best_metric = auc_metric
                    best_metric_epoch = epoch + 1
                    torch.save(model.state_dict(),
                               os.path.join(output_dir, model_name))
                    print('saved new best metric model')
                print(
                    f"current epoch: {epoch + 1} current AUC: {auc_metric:.4f}"
                    f" current accuracy: {acc_metric:.4f} best AUC: {best_metric:.4f}"
                    f" at epoch: {best_metric_epoch}")
    print(
        f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
    )
    return epoch_loss_values, metric_values
示例#15
0
 def test_value(self, input_data, expected_value):
     result = compute_roc_auc(**input_data)
     np.testing.assert_allclose(expected_value, result, rtol=1e-5)
示例#16
0
    if (epoch + 1) % val_interval == 0:
        model.eval()
        with torch.no_grad():
            y_pred = torch.tensor([], dtype=torch.float32, device=device)
            y = torch.tensor([], dtype=torch.long, device=device)
            for val_data in val_loader:
                val_images, val_labels = val_data['img'].to(
                    device), val_data['label'].to(device)
                y_pred = torch.cat([y_pred, model(val_images)], dim=0)
                y = torch.cat([y, val_labels], dim=0)

            acc_value = torch.eq(y_pred.argmax(dim=1), y)
            acc_metric = acc_value.sum().item() / len(acc_value)
            auc_metric = compute_roc_auc(y_pred,
                                         y,
                                         to_onehot_y=True,
                                         add_softmax=True)
            if acc_metric > best_metric:
                best_metric = acc_metric
                best_metric_epoch = epoch + 1
                torch.save(model.state_dict(), 'best_metric_model.pth')
                print('saved new best metric model')
            print(
                "current epoch %d current accuracy: %0.4f current AUC: %0.4f best accuracy: %0.4f at epoch %d"
                % (epoch + 1, acc_metric, auc_metric, best_metric,
                   best_metric_epoch))
            writer.add_scalar('val_accuracy', acc_metric, epoch + 1)
print('train completed, best_metric: %0.4f  at epoch: %d' %
      (best_metric, best_metric_epoch))
writer.close()
示例#17
0
    def pytorch_train(self):
        acc_scores = dict()
        auc_scores = dict()
        train_scores = dict()

        # start a typical PyTorch training
        val_interval = 5
        best_metric = -1 if self.task == "classification" else 1e8
        best_metric_epoch = -1
        writer = SummaryWriter()
        torch.save(self.model.state_dict(),
                   self.saved_model_dict)  # ADDED FOR SMALL EPOCH STUFF
        for epoch in range(self.epochs):
            print("-" * 10)
            print(f"epoch {epoch + 1}/{self.epochs}")
            self.model.train()
            epoch_loss = 0
            step = 0
            for batch_data in self.train_loader:
                step += 1
                inputs, labels = batch_data["img"].to(
                    self.device), batch_data["label"].to(self.device)

                self.optimizer.zero_grad()
                outputs = self.model(inputs)
                if self.pytorch_version == 1:
                    outputs = torch.nn.functional.softmax(outputs, dim=0)
                if self.task == "classification":
                    loss = self.loss_function(outputs, labels)
                else:
                    loss = self.loss_function(outputs,
                                              labels.view(-1, 1).float())

                loss.backward()
                self.optimizer.step()
                epoch_loss += loss.item()
                epoch_len = len(self.train_ds) // self.train_loader.batch_size
                if step % 3 == 0:
                    print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}")
                writer.add_scalar("train_loss", loss.item(),
                                  epoch_len * epoch + step)
            epoch_loss /= step
            train_scores[epoch] = epoch_loss
            print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}")

            if (epoch + 1) % val_interval == 0:
                self.model.eval()
                with torch.no_grad():
                    y_pred = torch.tensor([],
                                          dtype=torch.float32,
                                          device=self.device)
                    y = torch.tensor([], dtype=torch.long, device=self.device)
                    real = []
                    predicted = []
                    for val_data in self.val_loader:
                        val_images, val_labels = val_data["img"].to(
                            self.device), val_data["label"].to(self.device)
                        y_pred = torch.cat(
                            [y_pred, self.model(val_images)], dim=0)
                        y = torch.cat([y, val_labels], dim=0)
                        if self.task == "regression":
                            real.append(val_labels.cpu().numpy())
                            predicted.append(
                                self.model(val_images).argmax(
                                    dim=1).cpu().numpy())

                    if self.task == "classification":
                        acc_value = torch.eq(y_pred.argmax(dim=1), y)
                        acc_metric = acc_value.sum().item() / len(acc_value)
                        if self.model_type == 1:
                            auc_metric = 0
                        else:
                            auc_metric = compute_roc_auc(y_pred,
                                                         y,
                                                         to_onehot_y=True,
                                                         softmax=True)
                    else:
                        acc_metric = mean_squared_error(
                            self.flatten_list(real),
                            self.flatten_list(predicted))
                        auc_metric = 0
                    acc_scores[epoch] = acc_metric
                    auc_scores[epoch] = auc_metric
                    if (acc_metric >= best_metric
                            and self.task == "classification") or (
                                acc_metric <= best_metric
                                and self.task == "regression"):
                        best_metric = acc_metric
                        best_metric_epoch = epoch + 1
                        torch.save(self.model.state_dict(),
                                   self.saved_model_dict)
                    print(
                        "current epoch: {} current accuracy: {:.4f} current AUC: {:.4f} best accuracy: {:.4f} at epoch {}"
                        .format(epoch + 1, acc_metric, auc_metric, best_metric,
                                best_metric_epoch))
                    print("ACC SCORES: ", acc_scores)
                    print("AUC SCORES: ", auc_scores)
                    print("EPOCH LOSSES: ", train_scores)
                    writer.add_scalar("val_accuracy", acc_metric, epoch + 1)
        print(
            f"train completed, best_metric: {best_metric:.4f} at epoch: {best_metric_epoch}"
        )
        writer.close()
        print(acc_scores, "\n", auc_scores)
示例#18
0
 def test_value(self, y_pred, y, softmax, to_onehot, average,
                expected_value):
     y_pred = Activations(softmax=softmax)(y_pred)
     y = AsDiscrete(to_onehot=to_onehot, n_classes=2)(y)
     result = compute_roc_auc(y_pred=y_pred, y=y, average=average)
     np.testing.assert_allclose(expected_value, result, rtol=1e-5)
示例#19
0
 def _compute_fn(pred, label):
     return compute_roc_auc(
         y_pred=pred,
         y=label,
         average=Average(average),
     )