def test_value(self, input_data, expected_value): percentile = None if len(input_data) == 3: [seg_1, seg_2, percentile] = input_data else: [seg_1, seg_2] = input_data ct = 0 seg_1 = torch.tensor(seg_1) seg_2 = torch.tensor(seg_2) for metric in ["euclidean", "chessboard", "taxicab"]: for directed in [True, False]: hd_metric = HausdorffDistanceMetric(include_background=False, distance_metric=metric, percentile=percentile, directed=directed) # shape of seg_1, seg_2 are: HWD, converts to BNHWD batch, n_class = 2, 3 batch_seg_1 = seg_1.unsqueeze(0).unsqueeze(0).repeat( [batch, n_class, 1, 1, 1]) batch_seg_2 = seg_2.unsqueeze(0).unsqueeze(0).repeat( [batch, n_class, 1, 1, 1]) hd_metric(batch_seg_1, batch_seg_2) result = hd_metric.aggregate() expected_value_curr = expected_value[ct] np.testing.assert_allclose(expected_value_curr, result, rtol=1e-7) ct += 1
def test_nans(self, input_data): [seg_1, seg_2] = input_data seg_1 = torch.tensor(seg_1) seg_2 = torch.tensor(seg_2) hd_metric = HausdorffDistanceMetric(include_background=False, get_not_nans=True) batch_seg_1 = seg_1.unsqueeze(0).unsqueeze(0) batch_seg_2 = seg_2.unsqueeze(0).unsqueeze(0) hd_metric(batch_seg_1, batch_seg_2) result, not_nans = hd_metric.aggregate() np.testing.assert_allclose(0, result, rtol=1e-7) np.testing.assert_allclose(0, not_nans, rtol=1e-7)