def __call__(self, data): d = dict(data) self.randomize() if not self._do_transform: return d scaler = ScaleIntensity(minv=None, maxv=None, factor=self.factor) for key in self.keys: d[key] = scaler(d[key]) return d
def __call__(self, data: Mapping[Hashable, np.ndarray]) -> Dict[Hashable, np.ndarray]: d = dict(data) self.randomize() if not self._do_transform: return d scaler = ScaleIntensity(minv=None, maxv=None, factor=self.factor) for key in self.keys: d[key] = scaler(d[key]) return d
def __init__(self, keys, minv=0.0, maxv=1.0, factor=None): """ Args: keys (hashable items): keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` minv (int or float): minimum value of output data. maxv (int or float): maximum value of output data. factor (float): factor scale by ``v = v * (1 + factor)``. """ super().__init__(keys) self.scaler = ScaleIntensity(minv, maxv, factor)
def __init__( self, min_perc: float, max_perc: float, minmax: bool = False, ) -> None: super().__init__() self.min_perc = min_perc self.max_perc = max_perc if minmax: self.converter = ScaleIntensity(minv=0.0, maxv=1.0) else: self.converter = NormalizeIntensity()
def __init__( self, keys: KeysCollection, minv: float = 0.0, maxv: float = 1.0, factor: Optional[float] = None ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` minv: minimum value of output data. maxv: maximum value of output data. factor: factor scale by ``v = v * (1 + factor)``. """ super().__init__(keys) self.scaler = ScaleIntensity(minv, maxv, factor)
def __init__( self, keys: KeysCollection, minv: Optional[float] = 0.0, maxv: Optional[float] = 1.0, factor: Optional[float] = None, allow_missing_keys: bool = False, ) -> None: """ Args: keys: keys of the corresponding items to be transformed. See also: :py:class:`monai.transforms.compose.MapTransform` minv: minimum value of output data. maxv: maximum value of output data. factor: factor scale by ``v = v * (1 + factor)``. In order to use this parameter, please set `minv` and `maxv` into None. allow_missing_keys: don't raise exception if key is missing. """ super().__init__(keys, allow_missing_keys) self.scaler = ScaleIntensity(minv, maxv, factor)