def test_correct_results(self): flip = RandAxisFlipd(keys="img", prob=1.0) result = flip({"img": self.imt[0]}) expected = [] for channel in self.imt[0]: expected.append(np.flip(channel, flip._axis)) self.assertTrue(np.allclose(np.stack(expected), result["img"]))
def transformations(self, H, L): lower = L - (H / 2) upper = L + (H / 2) basic_transforms = Compose([ # Load image LoadImaged(keys=["image"]), # Segmentacija CTSegmentation(keys=["image"]), AddChanneld(keys=["image"]), # Crop foreground based on seg image. CropForegroundd(keys=["image"], source_key="image", margin=(30, 30, 0)), # Obreži sliko v Z smeri, relative_z_roi = ( % od spodaj, % od zgoraj) RelativeAsymmetricZCropd(keys=["image"], relative_z_roi=(0.15, 0.25)), ]) train_transforms = Compose([ basic_transforms, # Normalizacija na CT okno # https://radiopaedia.org/articles/windowing-ct RandCTWindowd(keys=["image"], prob=1.0, width=(H - 50, H + 50), level=(L - 25, L + 25)), # Mogoče zanimiva RandAxisFlipd(keys=["image"], prob=0.1), RandAffined( keys=["image"], prob=0.25, rotate_range=(0, 0, np.pi / 16), shear_range=(0.05, 0.05, 0.0), translate_range=(10, 10, 0), scale_range=(0.05, 0.05, 0.0), spatial_size=(-1, -1, -1), padding_mode="zeros", ), ToTensord(keys=["image"]), ]).flatten() # NOTE: No random transforms in the validation data valid_transforms = Compose([ basic_transforms, # Normalizacija na CT okno # https://radiopaedia.org/articles/windowing-ct CTWindowd(keys=["image"], width=H, level=L), ToTensord(keys=["image"]), ]).flatten() return train_transforms, valid_transforms
def test_correct_results(self): for p in TEST_NDARRAYS: flip = RandAxisFlipd(keys="img", prob=1.0) result = flip({"img": p(self.imt[0])})["img"] expected = [ np.flip(channel, flip.flipper._axis) for channel in self.imt[0] ] assert_allclose(result, p(np.stack(expected)))
def test_correct_results(self): for p in TEST_NDARRAYS_ALL: flip = RandAxisFlipd(keys="img", prob=1.0) im = p(self.imt[0]) result = flip({"img": im}) test_local_inversion(flip, result, {"img": im}, "img") expected = [ np.flip(channel, flip.flipper._axis) for channel in self.imt[0] ] assert_allclose(result["img"], p(np.stack(expected)), type_test="tensor") set_track_meta(False) result = flip({"img": im})["img"] self.assertNotIsInstance(result, MetaTensor) self.assertIsInstance(result, torch.Tensor) set_track_meta(True)
def test_invert(self): set_determinism(seed=0) im_fname, seg_fname = ( make_nifti_image(i) for i in create_test_image_3d(101, 100, 107, noise_max=100)) transform = Compose([ LoadImaged(KEYS), AddChanneld(KEYS), Orientationd(KEYS, "RPS"), Spacingd(KEYS, pixdim=(1.2, 1.01, 0.9), mode=["bilinear", "nearest"], dtype=np.float32), ScaleIntensityd("image", minv=1, maxv=10), RandFlipd(KEYS, prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(KEYS, prob=0.5), RandRotate90d(KEYS, spatial_axes=(1, 2)), RandZoomd(KEYS, prob=0.5, min_zoom=0.5, max_zoom=1.1, keep_size=True), RandRotated(KEYS, prob=0.5, range_x=np.pi, mode="bilinear", align_corners=True, dtype=np.float64), RandAffined(KEYS, prob=0.5, rotate_range=np.pi, mode="nearest"), ResizeWithPadOrCropd(KEYS, 100), # test EnsureTensor for complicated dict data and invert it CopyItemsd(PostFix.meta("image"), times=1, names="test_dict"), # test to support Tensor, Numpy array and dictionary when inverting EnsureTyped(keys=["image", "test_dict"]), ToTensord("image"), CastToTyped(KEYS, dtype=[torch.uint8, np.uint8]), CopyItemsd("label", times=2, names=["label_inverted", "label_inverted1"]), CopyItemsd("image", times=2, names=["image_inverted", "image_inverted1"]), ]) data = [{"image": im_fname, "label": seg_fname} for _ in range(12)] # num workers = 0 for mac or gpu transforms num_workers = 0 if sys.platform != "linux" or torch.cuda.is_available( ) else 2 dataset = CacheDataset(data, transform=transform, progress=False) loader = DataLoader(dataset, num_workers=num_workers, batch_size=5) inverter = Invertd( # `image` was not copied, invert the original value directly keys=["image_inverted", "label_inverted", "test_dict"], transform=transform, orig_keys=["label", "label", "test_dict"], meta_keys=[ PostFix.meta("image_inverted"), PostFix.meta("label_inverted"), None ], orig_meta_keys=[ PostFix.meta("label"), PostFix.meta("label"), None ], nearest_interp=True, to_tensor=[True, False, False], device="cpu", ) inverter_1 = Invertd( # `image` was not copied, invert the original value directly keys=["image_inverted1", "label_inverted1"], transform=transform, orig_keys=["image", "image"], meta_keys=[ PostFix.meta("image_inverted1"), PostFix.meta("label_inverted1") ], orig_meta_keys=[PostFix.meta("image"), PostFix.meta("image")], nearest_interp=[True, False], to_tensor=[True, True], device="cpu", ) expected_keys = [ "image", "image_inverted", "image_inverted1", PostFix.meta("image_inverted1"), PostFix.meta("image_inverted"), PostFix.meta("image"), "image_transforms", "label", "label_inverted", "label_inverted1", PostFix.meta("label_inverted1"), PostFix.meta("label_inverted"), PostFix.meta("label"), "label_transforms", "test_dict", "test_dict_transforms", ] # execute 1 epoch for d in loader: d = decollate_batch(d) for item in d: item = inverter(item) item = inverter_1(item) self.assertListEqual(sorted(item), expected_keys) self.assertTupleEqual(item["image"].shape[1:], (100, 100, 100)) self.assertTupleEqual(item["label"].shape[1:], (100, 100, 100)) # check the nearest interpolation mode i = item["image_inverted"] torch.testing.assert_allclose( i.to(torch.uint8).to(torch.float), i.to(torch.float)) self.assertTupleEqual(i.shape[1:], (100, 101, 107)) i = item["label_inverted"] torch.testing.assert_allclose( i.to(torch.uint8).to(torch.float), i.to(torch.float)) self.assertTupleEqual(i.shape[1:], (100, 101, 107)) # test inverted test_dict self.assertTrue( isinstance(item["test_dict"]["affine"], np.ndarray)) self.assertTrue( isinstance(item["test_dict"]["filename_or_obj"], str)) # check the case that different items use different interpolation mode to invert transforms d = item["image_inverted1"] # if the interpolation mode is nearest, accumulated diff should be smaller than 1 self.assertLess( torch.sum( d.to(torch.float) - d.to(torch.uint8).to(torch.float)).item(), 1.0) self.assertTupleEqual(d.shape, (1, 100, 101, 107)) d = item["label_inverted1"] # if the interpolation mode is not nearest, accumulated diff should be greater than 10000 self.assertGreater( torch.sum( d.to(torch.float) - d.to(torch.uint8).to(torch.float)).item(), 10000.0) self.assertTupleEqual(d.shape, (1, 100, 101, 107)) # check labels match reverted = item["label_inverted"].detach().cpu().numpy().astype( np.int32) original = LoadImaged(KEYS)(data[-1])["label"] n_good = np.sum(np.isclose(reverted, original, atol=1e-3)) reverted_name = item[PostFix.meta("label_inverted")]["filename_or_obj"] original_name = data[-1]["label"] self.assertEqual(reverted_name, original_name) print("invert diff", reverted.size - n_good) # 25300: 2 workers (cpu, non-macos) # 1812: 0 workers (gpu or macos) # 1821: windows torch 1.10.0 self.assertTrue((reverted.size - n_good) in (34007, 1812, 1821), f"diff. {reverted.size - n_good}") set_determinism(seed=None)
0, Flipd(KEYS, [1, 2]), )) TESTS.append(( "RandFlipd 3d", "3D", 0, RandFlipd(KEYS, 1, [1, 2]), )) TESTS.append(( "RandAxisFlipd 3d", "3D", 0, RandAxisFlipd(KEYS, 1), )) for acc in [True, False]: TESTS.append(( "Orientationd 3d", "3D", 0, Orientationd(KEYS, "RAS", as_closest_canonical=acc), )) TESTS.append(( "Rotate90d 2d", "2D", 0, Rotate90d(KEYS),
def test_invert(self): set_determinism(seed=0) im_fname, seg_fname = [ make_nifti_image(i) for i in create_test_image_3d(101, 100, 107, noise_max=100) ] transform = Compose([ LoadImaged(KEYS), AddChanneld(KEYS), Orientationd(KEYS, "RPS"), Spacingd(KEYS, pixdim=(1.2, 1.01, 0.9), mode=["bilinear", "nearest"], dtype=np.float32), ScaleIntensityd("image", minv=1, maxv=10), RandFlipd(KEYS, prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(KEYS, prob=0.5), RandRotate90d(KEYS, spatial_axes=(1, 2)), RandZoomd(KEYS, prob=0.5, min_zoom=0.5, max_zoom=1.1, keep_size=True), RandRotated(KEYS, prob=0.5, range_x=np.pi, mode="bilinear", align_corners=True), RandAffined(KEYS, prob=0.5, rotate_range=np.pi, mode="nearest"), ResizeWithPadOrCropd(KEYS, 100), ToTensord( "image" ), # test to support both Tensor and Numpy array when inverting CastToTyped(KEYS, dtype=[torch.uint8, np.uint8]), ]) data = [{"image": im_fname, "label": seg_fname} for _ in range(12)] # num workers = 0 for mac or gpu transforms num_workers = 0 if sys.platform == "darwin" or torch.cuda.is_available( ) else 2 dataset = CacheDataset(data, transform=transform, progress=False) loader = DataLoader(dataset, num_workers=num_workers, batch_size=5) # set up engine def _train_func(engine, batch): self.assertTupleEqual(batch["image"].shape[1:], (1, 100, 100, 100)) engine.state.output = batch engine.fire_event(IterationEvents.MODEL_COMPLETED) return engine.state.output engine = Engine(_train_func) engine.register_events(*IterationEvents) # set up testing handler TransformInverter( transform=transform, loader=loader, output_keys=["image", "label"], batch_keys="label", nearest_interp=True, postfix="inverted1", to_tensor=[True, False], device="cpu", num_workers=0 if sys.platform == "darwin" or torch.cuda.is_available() else 2, ).attach(engine) # test different nearest interpolation values TransformInverter( transform=transform, loader=loader, output_keys=["image", "label"], batch_keys="image", nearest_interp=[True, False], post_func=[lambda x: x + 10, lambda x: x], postfix="inverted2", num_workers=0 if sys.platform == "darwin" or torch.cuda.is_available() else 2, ).attach(engine) engine.run(loader, max_epochs=1) set_determinism(seed=None) self.assertTupleEqual(engine.state.output["image"].shape, (2, 1, 100, 100, 100)) self.assertTupleEqual(engine.state.output["label"].shape, (2, 1, 100, 100, 100)) # check the nearest inerpolation mode for i in engine.state.output["image_inverted1"]: torch.testing.assert_allclose( i.to(torch.uint8).to(torch.float), i.to(torch.float)) self.assertTupleEqual(i.shape, (1, 100, 101, 107)) for i in engine.state.output["label_inverted1"]: np.testing.assert_allclose( i.astype(np.uint8).astype(np.float32), i.astype(np.float32)) self.assertTupleEqual(i.shape, (1, 100, 101, 107)) # check labels match reverted = engine.state.output["label_inverted1"][-1].astype(np.int32) original = LoadImaged(KEYS)(data[-1])["label"] n_good = np.sum(np.isclose(reverted, original, atol=1e-3)) reverted_name = engine.state.output["label_meta_dict"][ "filename_or_obj"][-1] original_name = data[-1]["label"] self.assertEqual(reverted_name, original_name) print("invert diff", reverted.size - n_good) # 25300: 2 workers (cpu, non-macos) # 1812: 0 workers (gpu or macos) # 1824: torch 1.5.1 self.assertTrue((reverted.size - n_good) in (25300, 1812, 1824), "diff. in 3 possible values") # check the case that different items use different interpolation mode to invert transforms for i in engine.state.output["image_inverted2"]: # if the interpolation mode is nearest, accumulated diff should be smaller than 1 self.assertLess( torch.sum( i.to(torch.float) - i.to(torch.uint8).to(torch.float)).item(), 1.0) self.assertTupleEqual(i.shape, (1, 100, 101, 107)) for i in engine.state.output["label_inverted2"]: # if the interpolation mode is not nearest, accumulated diff should be greater than 10000 self.assertGreater( torch.sum( i.to(torch.float) - i.to(torch.uint8).to(torch.float)).item(), 10000.0) self.assertTupleEqual(i.shape, (1, 100, 101, 107))
CropForegroundd(KEYS, source_key="label", margin=2))) TESTS.append(("CropForegroundd 3d", "3D", 0, True, CropForegroundd(KEYS, source_key="label", k_divisible=[5, 101, 2]))) TESTS.append(("ResizeWithPadOrCropd 3d", "3D", 0, True, ResizeWithPadOrCropd(KEYS, [201, 150, 105]))) TESTS.append(("Flipd 3d", "3D", 0, True, Flipd(KEYS, [1, 2]))) TESTS.append(("Flipd 3d", "3D", 0, True, Flipd(KEYS, [1, 2]))) TESTS.append(("RandFlipd 3d", "3D", 0, True, RandFlipd(KEYS, 1, [1, 2]))) TESTS.append(("RandAxisFlipd 3d", "3D", 0, True, RandAxisFlipd(KEYS, 1))) TESTS.append(("RandAxisFlipd 3d", "3D", 0, True, RandAxisFlipd(KEYS, 1))) for acc in [True, False]: TESTS.append(("Orientationd 3d", "3D", 0, True, Orientationd(KEYS, "RAS", as_closest_canonical=acc))) TESTS.append(("Rotate90d 2d", "2D", 0, True, Rotate90d(KEYS))) TESTS.append( ("Rotate90d 3d", "3D", 0, True, Rotate90d(KEYS, k=2, spatial_axes=(1, 2)))) TESTS.append(("RandRotate90d 3d", "3D", 0, True, RandRotate90d(KEYS, prob=1, spatial_axes=(1, 2)))) TESTS.append(("Spacingd 3d", "3D", 3e-2, True,
def test_invert(self): set_determinism(seed=0) im_fname, seg_fname = [ make_nifti_image(i) for i in create_test_image_3d(101, 100, 107, noise_max=100) ] transform = Compose([ LoadImaged(KEYS), AddChanneld(KEYS), Orientationd(KEYS, "RPS"), Spacingd(KEYS, pixdim=(1.2, 1.01, 0.9), mode=["bilinear", "nearest"], dtype=np.float32), ScaleIntensityd("image", minv=1, maxv=10), RandFlipd(KEYS, prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(KEYS, prob=0.5), RandRotate90d(KEYS, spatial_axes=(1, 2)), RandZoomd(KEYS, prob=0.5, min_zoom=0.5, max_zoom=1.1, keep_size=True), RandRotated(KEYS, prob=0.5, range_x=np.pi, mode="bilinear", align_corners=True), RandAffined(KEYS, prob=0.5, rotate_range=np.pi, mode="nearest"), ResizeWithPadOrCropd(KEYS, 100), ToTensord( "image" ), # test to support both Tensor and Numpy array when inverting CastToTyped(KEYS, dtype=[torch.uint8, np.uint8]), ]) data = [{"image": im_fname, "label": seg_fname} for _ in range(12)] # num workers = 0 for mac or gpu transforms num_workers = 0 if sys.platform == "darwin" or torch.cuda.is_available( ) else 2 dataset = CacheDataset(data, transform=transform, progress=False) loader = DataLoader(dataset, num_workers=num_workers, batch_size=5) inverter = Invertd( keys=["image", "label"], transform=transform, loader=loader, orig_keys="label", nearest_interp=True, postfix="inverted", to_tensor=[True, False], device="cpu", num_workers=0 if sys.platform == "darwin" or torch.cuda.is_available() else 2, ) # execute 1 epoch for d in loader: d = inverter(d) # this unit test only covers basic function, test_handler_transform_inverter covers more self.assertTupleEqual(d["image"].shape[1:], (1, 100, 100, 100)) self.assertTupleEqual(d["label"].shape[1:], (1, 100, 100, 100)) # check the nearest inerpolation mode for i in d["image_inverted"]: torch.testing.assert_allclose( i.to(torch.uint8).to(torch.float), i.to(torch.float)) self.assertTupleEqual(i.shape, (1, 100, 101, 107)) for i in d["label_inverted"]: np.testing.assert_allclose( i.astype(np.uint8).astype(np.float32), i.astype(np.float32)) self.assertTupleEqual(i.shape, (1, 100, 101, 107)) set_determinism(seed=None)
if TYPE_CHECKING: has_nib = True else: _, has_nib = optional_import("nibabel") KEYS = ["image", "label"] TESTS_3D = [( t.__class__.__name__ + (" pad_list_data_collate" if collate_fn else " default_collate"), t, collate_fn, 3 ) for collate_fn in [None, pad_list_data_collate] for t in [ RandFlipd(keys=KEYS, prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(keys=KEYS, prob=0.5), Compose( [RandRotate90d(keys=KEYS, spatial_axes=(1, 2)), ToTensord(keys=KEYS)]), RandZoomd(keys=KEYS, prob=0.5, min_zoom=0.5, max_zoom=1.1, keep_size=True), RandRotated(keys=KEYS, prob=0.5, range_x=np.pi), RandAffined(keys=KEYS, prob=0.5, rotate_range=np.pi, device=torch.device( "cuda" if torch.cuda.is_available() else "cpu")), ]] TESTS_2D = [ (t.__class__.__name__ + (" pad_list_data_collate" if collate_fn else " default_collate"), t,
def test_train_timing(self): images = sorted(glob(os.path.join(self.data_dir, "img*.nii.gz"))) segs = sorted(glob(os.path.join(self.data_dir, "seg*.nii.gz"))) train_files = [{ "image": img, "label": seg } for img, seg in zip(images[:32], segs[:32])] val_files = [{ "image": img, "label": seg } for img, seg in zip(images[-9:], segs[-9:])] device = torch.device("cuda:0") # define transforms for train and validation train_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), ScaleIntensityd(keys="image"), CropForegroundd(keys=["image", "label"], source_key="image"), # pre-compute foreground and background indexes # and cache them to accelerate training FgBgToIndicesd(keys="label", fg_postfix="_fg", bg_postfix="_bg"), # change to execute transforms with Tensor data EnsureTyped(keys=["image", "label"]), # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch ToDeviced(keys=["image", "label"], device=device), # randomly crop out patch samples from big # image based on pos / neg ratio # the image centers of negative samples # must be in valid image area RandCropByPosNegLabeld( keys=["image", "label"], label_key="label", spatial_size=(64, 64, 64), pos=1, neg=1, num_samples=4, fg_indices_key="label_fg", bg_indices_key="label_bg", ), RandFlipd(keys=["image", "label"], prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(keys=["image", "label"], prob=0.5), RandRotate90d(keys=["image", "label"], prob=0.5, spatial_axes=(1, 2)), RandZoomd(keys=["image", "label"], prob=0.5, min_zoom=0.8, max_zoom=1.2, keep_size=True), RandRotated( keys=["image", "label"], prob=0.5, range_x=np.pi / 4, mode=("bilinear", "nearest"), align_corners=True, dtype=np.float64, ), RandAffined(keys=["image", "label"], prob=0.5, rotate_range=np.pi / 2, mode=("bilinear", "nearest")), RandGaussianNoised(keys="image", prob=0.5), RandStdShiftIntensityd(keys="image", prob=0.5, factors=0.05, nonzero=True), ]) val_transforms = Compose([ LoadImaged(keys=["image", "label"]), EnsureChannelFirstd(keys=["image", "label"]), Spacingd(keys=["image", "label"], pixdim=(1.0, 1.0, 1.0), mode=("bilinear", "nearest")), ScaleIntensityd(keys="image"), CropForegroundd(keys=["image", "label"], source_key="image"), EnsureTyped(keys=["image", "label"]), # move the data to GPU and cache to avoid CPU -> GPU sync in every epoch ToDeviced(keys=["image", "label"], device=device), ]) max_epochs = 5 learning_rate = 2e-4 val_interval = 1 # do validation for every epoch # set CacheDataset, ThreadDataLoader and DiceCE loss for MONAI fast training train_ds = CacheDataset(data=train_files, transform=train_transforms, cache_rate=1.0, num_workers=8) val_ds = CacheDataset(data=val_files, transform=val_transforms, cache_rate=1.0, num_workers=5) # disable multi-workers because `ThreadDataLoader` works with multi-threads train_loader = ThreadDataLoader(train_ds, num_workers=0, batch_size=4, shuffle=True) val_loader = ThreadDataLoader(val_ds, num_workers=0, batch_size=1) loss_function = DiceCELoss(to_onehot_y=True, softmax=True, squared_pred=True, batch=True) model = UNet( spatial_dims=3, in_channels=1, out_channels=2, channels=(16, 32, 64, 128, 256), strides=(2, 2, 2, 2), num_res_units=2, norm=Norm.BATCH, ).to(device) # Novograd paper suggests to use a bigger LR than Adam, # because Adam does normalization by element-wise second moments optimizer = Novograd(model.parameters(), learning_rate * 10) scaler = torch.cuda.amp.GradScaler() post_pred = Compose( [EnsureType(), AsDiscrete(argmax=True, to_onehot=2)]) post_label = Compose([EnsureType(), AsDiscrete(to_onehot=2)]) dice_metric = DiceMetric(include_background=True, reduction="mean", get_not_nans=False) best_metric = -1 total_start = time.time() for epoch in range(max_epochs): epoch_start = time.time() print("-" * 10) print(f"epoch {epoch + 1}/{max_epochs}") model.train() epoch_loss = 0 step = 0 for batch_data in train_loader: step_start = time.time() step += 1 optimizer.zero_grad() # set AMP for training with torch.cuda.amp.autocast(): outputs = model(batch_data["image"]) loss = loss_function(outputs, batch_data["label"]) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() epoch_loss += loss.item() epoch_len = math.ceil(len(train_ds) / train_loader.batch_size) print(f"{step}/{epoch_len}, train_loss: {loss.item():.4f}" f" step time: {(time.time() - step_start):.4f}") epoch_loss /= step print(f"epoch {epoch + 1} average loss: {epoch_loss:.4f}") if (epoch + 1) % val_interval == 0: model.eval() with torch.no_grad(): for val_data in val_loader: roi_size = (96, 96, 96) sw_batch_size = 4 # set AMP for validation with torch.cuda.amp.autocast(): val_outputs = sliding_window_inference( val_data["image"], roi_size, sw_batch_size, model) val_outputs = [ post_pred(i) for i in decollate_batch(val_outputs) ] val_labels = [ post_label(i) for i in decollate_batch(val_data["label"]) ] dice_metric(y_pred=val_outputs, y=val_labels) metric = dice_metric.aggregate().item() dice_metric.reset() if metric > best_metric: best_metric = metric print( f"epoch: {epoch + 1} current mean dice: {metric:.4f}, best mean dice: {best_metric:.4f}" ) print( f"time consuming of epoch {epoch + 1} is: {(time.time() - epoch_start):.4f}" ) total_time = time.time() - total_start print( f"train completed, best_metric: {best_metric:.4f} total time: {total_time:.4f}" ) # test expected metrics self.assertGreater(best_metric, 0.95)
from tests.utils import make_nifti_image if TYPE_CHECKING: has_nib = True else: _, has_nib = optional_import("nibabel") KEYS = ["image", "label"] TESTS = [ (t.__class__.__name__ + (" pad_list_data_collate" if collate_fn else " default_collate"), t, collate_fn) for collate_fn in [None, pad_list_data_collate] for t in [ RandFlipd(keys=KEYS, spatial_axis=[1, 2]), RandAxisFlipd(keys=KEYS), RandRotate90d(keys=KEYS, spatial_axes=(1, 2)), RandZoomd(keys=KEYS, prob=0.5, min_zoom=0.5, max_zoom=1.1, keep_size=True), RandRotated(keys=KEYS, range_x=np.pi), RandAffined(keys=KEYS, rotate_range=np.pi), ] ] class TestInverseCollation(unittest.TestCase): """Test collation for of random transformations with prob == 0 and 1.""" def setUp(self): if not has_nib: self.skipTest("nibabel required for test_inverse")
def test_invert(self): set_determinism(seed=0) im_fname, seg_fname = [ make_nifti_image(i) for i in create_test_image_3d(101, 100, 107, noise_max=100) ] transform = Compose([ LoadImaged(KEYS), AddChanneld(KEYS), Orientationd(KEYS, "RPS"), Spacingd(KEYS, pixdim=(1.2, 1.01, 0.9), mode=["bilinear", "nearest"], dtype=np.float32), ScaleIntensityd("image", minv=1, maxv=10), RandFlipd(KEYS, prob=0.5, spatial_axis=[1, 2]), RandAxisFlipd(KEYS, prob=0.5), RandRotate90d(KEYS, spatial_axes=(1, 2)), RandZoomd(KEYS, prob=0.5, min_zoom=0.5, max_zoom=1.1, keep_size=True), RandRotated(KEYS, prob=0.5, range_x=np.pi, mode="bilinear", align_corners=True), RandAffined(KEYS, prob=0.5, rotate_range=np.pi, mode="nearest"), ResizeWithPadOrCropd(KEYS, 100), ToTensord(KEYS), CastToTyped(KEYS, dtype=torch.uint8), ]) data = [{"image": im_fname, "label": seg_fname} for _ in range(12)] # num workers = 0 for mac or gpu transforms num_workers = 0 if sys.platform == "darwin" or torch.cuda.is_available( ) else 2 dataset = CacheDataset(data, transform=transform, progress=False) loader = DataLoader(dataset, num_workers=num_workers, batch_size=5) # set up engine def _train_func(engine, batch): self.assertTupleEqual(batch["image"].shape[1:], (1, 100, 100, 100)) engine.state.output = batch engine.fire_event(IterationEvents.MODEL_COMPLETED) return engine.state.output engine = Engine(_train_func) engine.register_events(*IterationEvents) # set up testing handler TransformInverter( transform=transform, loader=loader, output_keys=["image", "label"], batch_keys="label", nearest_interp=True, num_workers=0 if sys.platform == "darwin" or torch.cuda.is_available() else 2, ).attach(engine) engine.run(loader, max_epochs=1) set_determinism(seed=None) self.assertTupleEqual(engine.state.output["image"].shape, (2, 1, 100, 100, 100)) self.assertTupleEqual(engine.state.output["label"].shape, (2, 1, 100, 100, 100)) for i in engine.state.output["image_inverted"] + engine.state.output[ "label_inverted"]: torch.testing.assert_allclose( i.to(torch.uint8).to(torch.float), i.to(torch.float)) self.assertTupleEqual(i.shape, (1, 100, 101, 107)) # check labels match reverted = engine.state.output["label_inverted"][-1].detach().cpu( ).numpy()[0].astype(np.int32) original = LoadImaged(KEYS)(data[-1])["label"] n_good = np.sum(np.isclose(reverted, original, atol=1e-3)) reverted_name = engine.state.output["label_meta_dict"][ "filename_or_obj"][-1] original_name = data[-1]["label"] self.assertEqual(reverted_name, original_name) print("invert diff", reverted.size - n_good) self.assertTrue((reverted.size - n_good) in (25300, 1812), "diff. in two possible values")