def test_fail(self): t1 = SpatialPadd("image", [10, 5]) data = t1(self.all_data["2D"]) # Check that error is thrown when inverse are used out of order. t2 = ResizeWithPadOrCropd("image", [10, 5]) with self.assertRaises(RuntimeError): t2.inverse(data)
def test_pad_shape(self, input_param, input_data, expected_val): for p in TEST_NDARRAYS_ALL: if isinstance( p(0), torch.Tensor) and ("constant_values" in input_param or input_param["mode"] == "reflect"): continue padcropper = ResizeWithPadOrCropd(**input_param) input_data["img"] = p(input_data["img"]) result = padcropper(input_data) np.testing.assert_allclose(result["img"].shape, expected_val) inv = padcropper.inverse(result) for k in input_data: self.assertTupleEqual(inv[k].shape, input_data[k].shape)