示例#1
0
    def __init__(
        self,
        include_background: bool = True,
        to_onehot_y: bool = False,
        sigmoid: bool = False,
        softmax: bool = False,
        other_act: Optional[Callable] = None,
        w_type: Union[Weight, str] = Weight.SQUARE,
        reduction: Union[LossReduction, str] = LossReduction.MEAN,
        smooth_nr: float = 1e-5,
        smooth_dr: float = 1e-5,
        batch: bool = False,
    ) -> None:
        """
        Args:
            include_background: If False channel index 0 (background category) is excluded from the calculation.
            to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
            sigmoid: If True, apply a sigmoid function to the prediction.
            softmax: If True, apply a softmax function to the prediction.
            other_act: if don't want to use `sigmoid` or `softmax`, use other callable function to execute
                other activation layers, Defaults to ``None``. for example:
                `other_act = torch.tanh`.
            squared_pred: use squared versions of targets and predictions in the denominator or not.
            w_type: {``"square"``, ``"simple"``, ``"uniform"``}
                Type of function to transform ground truth volume to a weight factor. Defaults to ``"square"``.
            reduction: {``"none"``, ``"mean"``, ``"sum"``}
                Specifies the reduction to apply to the output. Defaults to ``"mean"``.

                - ``"none"``: no reduction will be applied.
                - ``"mean"``: the sum of the output will be divided by the number of elements in the output.
                - ``"sum"``: the output will be summed.
            smooth_nr: a small constant added to the numerator to avoid zero.
            smooth_dr: a small constant added to the denominator to avoid nan.
            batch: whether to sum the intersection and union areas over the batch dimension before the dividing.
                Defaults to False, intersection over union is computed from each item in the batch.

        Raises:
            TypeError: When ``other_act`` is not an ``Optional[Callable]``.
            ValueError: When more than 1 of [``sigmoid=True``, ``softmax=True``, ``other_act is not None``].
                Incompatible values.

        """
        super().__init__(reduction=LossReduction(reduction).value)
        if other_act is not None and not callable(other_act):
            raise TypeError(f"other_act must be None or callable but is {type(other_act).__name__}.")
        if int(sigmoid) + int(softmax) + int(other_act is not None) > 1:
            raise ValueError("Incompatible values: more than 1 of [sigmoid=True, softmax=True, other_act is not None].")

        self.include_background = include_background
        self.to_onehot_y = to_onehot_y
        self.sigmoid = sigmoid
        self.softmax = softmax
        self.other_act = other_act

        self.w_type = Weight(w_type)

        self.smooth_nr = float(smooth_nr)
        self.smooth_dr = float(smooth_dr)
        self.batch = batch
示例#2
0
文件: dice.py 项目: zymale/MONAI
    def __init__(
        self,
        include_background: bool = True,
        to_onehot_y: bool = False,
        sigmoid: bool = False,
        softmax: bool = False,
        w_type: Union[Weight, str] = Weight.SQUARE,
        reduction: Union[LossReduction, str] = LossReduction.MEAN,
    ) -> None:
        """
        Args:
            include_background: If False channel index 0 (background category) is excluded from the calculation.
            to_onehot_y: whether to convert `y` into the one-hot format. Defaults to False.
            sigmoid: If True, apply a sigmoid function to the prediction.
            softmax: If True, apply a softmax function to the prediction.
            w_type: {``"square"``, ``"simple"``, ``"uniform"``}
                Type of function to transform ground truth volume to a weight factor. Defaults to ``"square"``.
            reduction: {``"none"``, ``"mean"``, ``"sum"``}
                Specifies the reduction to apply to the output. Defaults to ``"mean"``.

                - ``"none"``: no reduction will be applied.
                - ``"mean"``: the sum of the output will be divided by the number of elements in the output.
                - ``"sum"``: the output will be summed.

        Raises:
            ValueError: reduction={reduction} is invalid. Valid options are: none, mean or sum.
            ValueError: sigmoid=True and softmax=True are not compatible.

        """
        super().__init__(reduction=LossReduction(reduction).value)

        self.include_background = include_background
        self.to_onehot_y = to_onehot_y
        if sigmoid and softmax:
            raise ValueError(
                "sigmoid=True and softmax=True are not compatible.")
        self.sigmoid = sigmoid
        self.softmax = softmax

        w_type = Weight(w_type)
        self.w_func: Callable = torch.ones_like
        if w_type == Weight.SIMPLE:
            self.w_func = torch.reciprocal
        elif w_type == Weight.SQUARE:
            self.w_func = lambda x: torch.reciprocal(x * x)