def make_spatial_bias_plot(df, out_name, vmin, vmax, col1='pm25_ug3', col2='sfc_pm25', date=None, region='domain', **kwargs): if region == 'domain': ax = monet.plots.sp_scatter_bias(df, col1=col1, col2=col2, map_kwargs=dict(states=False), val_max=vmax, val_min=vmin, **kwargs) else: ax = monet.plots.sp_scatter_bias(df, col1=col1, col2=col2, map_kwargs=dict(states=True), val_max=vmax, val_min=vmin, **kwargs) date = pd.Timestamp(date) dt = date - initial_datetime dtstr = str(dt.days * 24 + dt.seconds // 3600).zfill(3) plt.title(date.strftime('time=%Y/%m/%d %H:00 | CMAQ - AIRNOW ')) if region == 'domain': latmin = -90.0 lonmin = -180.0 latmax = 90.0 lonmax = 180.0 else: from monet.util.tools import get_giorgi_region_bounds as get_giorgi_bounds latmin, lonmin, latmax, lonmax, acro = get_giorgi_bounds( index=None, acronym=region) plt.xlim([lonmin, lonmax]) plt.ylim([latmin, latmax]) plt.tight_layout(pad=0) savename = "{}.{}.{}.jpg".format(out_name, initial_datetime.strftime('spbias'), dtstr) print(savename) monet.plots.savefig(savename, bbox_inches='tight', dpi=100, decorate=True) plt.close()
startdatename_obj = datetime.datetime.strptime( startdate, '%Y-%m-%d %H:%M:%S') enddatename_obj = datetime.datetime.strptime( enddate, '%Y-%m-%d %H:%M:%S') startdatename = str( datetime.datetime.strftime(startdatename_obj, '%Y-%m-%d_%H')) enddatename = str( datetime.datetime.strftime(enddatename_obj, '%Y-%m-%d_%H')) else: startdatename = 'Entire' enddatename = 'Period' if subset_giorgi is True: #df.query('giorgi_region == '+'"'+ee+'"',inplace=True) from monet.util.tools import get_giorgi_region_bounds as get_giorgi_bounds latmin, lonmin, latmax, lonmax, acro = get_giorgi_bounds( index=None, acronym=ee) df = df[(df['latitude'] >= latmin) & (df['latitude'] <= latmax)] df = df[(df['longitude'] >= lonmin) & (df['longitude'] <= lonmax)] if reg is True and subset_giorgi is False: stats = open( finput[0].replace('.hdf', '_') + startdatename + '_' + enddatename + '_reg_stats_domain.txt', 'w') elif reg is True and subset_giorgi is True: stats = open( finput[0].replace('.hdf', '_') + startdatename + '_' + enddatename + '_reg_stats_' + ee + '.txt', 'w') elif reg is False and subset_giorgi is True: stats = open( finput[0].replace('.hdf', '_') + startdatename + '_' + enddatename + '_stats_' + ee + '.txt', 'w')