def test_layer_global_max_pooling2d(system_dict): forward = True test = "test_layer_global_max_pooling2d" system_dict["total_tests"] += 1 print_start(test, system_dict["total_tests"]) if (forward): try: gtf = prototype(verbose=0) gtf.Prototype("sample-project-1", "sample-experiment-1") network = [] network.append(gtf.global_max_pooling2d()) gtf.Compile_Network(network, data_shape=(3, 32, 32), use_gpu=False) x = tf.placeholder(tf.float32, shape=(1, 32, 32, 3)) y = gtf.system_dict["local"]["model"](x) system_dict["successful_tests"] += 1 print_status("Pass") except Exception as e: system_dict["failed_tests_exceptions"].append(e) system_dict["failed_tests_lists"].append(test) forward = False print_status("Fail") else: system_dict["skipped_tests_lists"].append(test) print_status("Skipped") return system_dict
def test_optimizer_nesterov_sgd(system_dict): forward = True; if(not os.path.isdir("datasets")): os.system("! wget --load-cookies /tmp/cookies.txt \"https://docs.google.com/uc?export=download&confirm=$(wget --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1rG-U1mS8hDU7_wM56a1kc-li_zHLtbq2' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1rG-U1mS8hDU7_wM56a1kc-li_zHLtbq2\" -O datasets.zip && rm -rf /tmp/cookies.txt") os.system("! unzip -qq datasets.zip") test = "test_optimizer_nesterov_sgd"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); gtf.Default(dataset_path="datasets/dataset_cats_dogs_train", model_name="resnet50", freeze_base_network=True, num_epochs=2); gtf.optimizer_nesterov_sgd(0.01, momentum=0.9, weight_decay=0.0001, momentum_dampening_rate=0, clipnorm=1.0, clipvalue=0.5); gtf.Train(); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
def test_block_mobilenet_v2_inverted_linear_bottleneck(system_dict): forward = True; test = "test_block_mobilenet_v2_inverted_linear_bottleneck"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.mobilenet_v2_inverted_linear_bottleneck_block(output_channels=64, bottleneck_width=4, stride=1)); gtf.Compile_Network(network, data_shape=(64, 64, 64), use_gpu=False); x = tf.placeholder(tf.float32, shape=(1, 64, 64, 64)) y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
def test_activation_sigmoid(system_dict): forward = True; test = "test_activation_sigmoid"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.sigmoid()); gtf.Compile_Network(network, data_shape=(3, 32, 32), use_gpu=False); x = tf.placeholder(tf.float32, shape=(1, 32, 32, 3)) y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
def test_loss_squared_hinge(system_dict): forward = True test = "test_loss_squared_hinge" system_dict["total_tests"] += 1 print_start(test, system_dict["total_tests"]) if (forward): try: gtf = prototype(verbose=0) gtf.Prototype("sample-project-1", "sample-experiment-1") y = np.random.randn(1, 5) label = np.random.randn(1, 5) y = K.constant(y) label = K.constant(label) gtf.loss_squared_hinge() load_loss(gtf.system_dict) loss_obj = gtf.system_dict["local"]["criterion"] loss_val = loss_obj(label, y) system_dict["successful_tests"] += 1 print_status("Pass") except Exception as e: system_dict["failed_tests_exceptions"].append(e) system_dict["failed_tests_lists"].append(test) forward = False print_status("Fail") else: system_dict["skipped_tests_lists"].append(test) print_status("Skipped") return system_dict
def test_block_conv_bn_relu(system_dict): forward = True test = "test_block_conv_bn_relu" system_dict["total_tests"] += 1 print_start(test, system_dict["total_tests"]) if (forward): try: gtf = prototype(verbose=0) gtf.Prototype("sample-project-1", "sample-experiment-1") network = [] network.append(gtf.conv_bn_relu_block(output_channels=64)) gtf.Compile_Network(network, data_shape=(1, 64, 64), use_gpu=False) x = tf.placeholder(tf.float32, shape=(1, 64, 64, 1)) y = gtf.system_dict["local"]["model"](x) system_dict["successful_tests"] += 1 print_status("Pass") except Exception as e: system_dict["failed_tests_exceptions"].append(e) system_dict["failed_tests_lists"].append(test) forward = False print_status("Fail") else: system_dict["skipped_tests_lists"].append(test) print_status("Skipped") return system_dict
def test_block_densenet(system_dict): forward = True test = "test_block_densenet" system_dict["total_tests"] += 1 print_start(test, system_dict["total_tests"]) if (forward): try: gtf = prototype(verbose=0) gtf.Prototype("sample-project-1", "sample-experiment-1") network = [] network.append( gtf.densenet_block(bottleneck_size=4, growth_rate=16, dropout=0.2)) gtf.Compile_Network(network, data_shape=(1, 64, 64), use_gpu=False) x = tf.placeholder(tf.float32, shape=(1, 64, 64, 1)) y = gtf.system_dict["local"]["model"](x) system_dict["successful_tests"] += 1 print_status("Pass") except Exception as e: system_dict["failed_tests_exceptions"].append(e) system_dict["failed_tests_lists"].append(test) forward = False print_status("Fail") else: system_dict["skipped_tests_lists"].append(test) print_status("Skipped") return system_dict
def test_layer_fully_connected(system_dict): forward = True test = "test_layer_fully_connected" system_dict["total_tests"] += 1 print_start(test, system_dict["total_tests"]) if (forward): try: gtf = prototype(verbose=0) gtf.Prototype("sample-project-1", "sample-experiment-1") network = [] network.append(gtf.convolution2d(output_channels=3, kernel_size=3)) network.append(gtf.flatten()) network.append(gtf.fully_connected(units=10)) gtf.Compile_Network(network, data_shape=(3, 32, 32), use_gpu=False) x = tf.placeholder(tf.float32, shape=(1, 32, 32, 3)) y = gtf.system_dict["local"]["model"](x) system_dict["successful_tests"] += 1 print_status("Pass") except Exception as e: system_dict["failed_tests_exceptions"].append(e) system_dict["failed_tests_lists"].append(test) forward = False print_status("Fail") else: system_dict["skipped_tests_lists"].append(test) print_status("Skipped") return system_dict
def test_loss_kldiv(system_dict): forward = True; test = "test_loss_kldiv"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); y = np.random.randn(1, 5); label = np.random.randn(1, 5); y = K.constant(y); label = K.constant(label); gtf.loss_kldiv(); load_loss(gtf.system_dict); loss_obj = gtf.system_dict["local"]["criterion"]; loss_val = loss_obj(label, y); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
def test_block_inception_a(system_dict): forward = True; test = "test_block_inception_a"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.inception_a_block(pooling_branch_channels=32, pool_type="avg")); network.append(gtf.inception_a_block(pooling_branch_channels=32, pool_type="max")); gtf.Compile_Network(network, data_shape=(1, 64, 64), use_gpu=False); x = tf.placeholder(tf.float32, shape=(1, 64, 64, 1)) y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
def test_layer_add(system_dict): forward = True test = "test_layer_add" system_dict["total_tests"] += 1 print_start(test, system_dict["total_tests"]) if (forward): try: gtf = prototype(verbose=0) gtf.Prototype("sample-project-1", "sample-experiment-1") network = [] network.append(gtf.convolution(output_channels=16)) network.append(gtf.batch_normalization()) network.append(gtf.relu()) network.append(gtf.convolution(output_channels=16)) network.append(gtf.batch_normalization()) network.append(gtf.relu()) network.append(gtf.max_pooling()) subnetwork = [] branch1 = [] branch1.append(gtf.convolution(output_channels=16)) branch1.append(gtf.batch_normalization()) branch1.append(gtf.convolution(output_channels=16)) branch1.append(gtf.batch_normalization()) branch2 = [] branch2.append(gtf.convolution(output_channels=16)) branch2.append(gtf.batch_normalization()) branch3 = [] branch3.append(gtf.identity()) subnetwork.append(branch1) subnetwork.append(branch2) subnetwork.append(branch3) subnetwork.append(gtf.add()) network.append(subnetwork) gtf.Compile_Network(network, data_shape=(3, 32, 32), use_gpu=False) x = tf.placeholder(tf.float32, shape=(1, 32, 32, 3)) y = gtf.system_dict["local"]["model"](x) system_dict["successful_tests"] += 1 print_status("Pass") except Exception as e: system_dict["failed_tests_exceptions"].append(e) system_dict["failed_tests_lists"].append(test) forward = False print_status("Fail") else: system_dict["skipped_tests_lists"].append(test) print_status("Skipped") return system_dict
def test_initializer_he_uniform(system_dict): forward = True; test = "test_initializer_he_uniform"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.convolution(output_channels=16)); network.append(gtf.batch_normalization()); network.append(gtf.relu()); network.append(gtf.convolution(output_channels=32)); network.append(gtf.batch_normalization()); network.append(gtf.relu()); network.append(gtf.average_pooling(kernel_size=2)); network.append(gtf.convolution(output_channels=64)); network.append(gtf.batch_normalization()); network.append(gtf.relu()); network.append(gtf.convolution(output_channels=64)); network.append(gtf.batch_normalization()); network.append(gtf.relu()); network.append(gtf.average_pooling(kernel_size=2)); network.append(gtf.convolution(output_channels=128)); network.append(gtf.batch_normalization()); network.append(gtf.relu()); network.append(gtf.convolution(output_channels=128)); network.append(gtf.batch_normalization()); network.append(gtf.relu()); network.append(gtf.average_pooling(kernel_size=2)); network.append(gtf.flatten()); network.append(gtf.dropout(drop_probability=0.2)); network.append(gtf.fully_connected(units=1024)); network.append(gtf.dropout(drop_probability=0.2)); network.append(gtf.fully_connected(units=2)); network.append(gtf.softmax()); gtf.Compile_Network(network, data_shape=(3, 32, 32), network_initializer="he_uniform"); x = tf.placeholder(tf.float32, shape=(1, 32, 32, 3)) y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict