示例#1
0
def example1():
    target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
                  "databases/undocumented/connectionist-bench/sonar/sonar.all-data")

    # Instantiate class
    ml = MLObject(target_url)

    # output summary statistics
    ml.data_summary()
示例#2
0
def example1():
    target_url = (
        "https://archive.ics.uci.edu/ml/machine-learning-"
        "databases/undocumented/connectionist-bench/sonar/sonar.all-data")

    # Instantiate class
    ml = MLObject(target_url)

    # output summary statistics
    ml.data_summary()
示例#3
0
def example2():
    target_url = ("https://archive.ics.uci.edu/ml/machine-learning-"
                  "databases/undocumented/connectionist-bench/sonar/sonar.all-data")

    # Instantiate class
    ml = MLObject(target_url)

    # split the data into traning and test datasets
    train, test = ml.train_test_split(percentage=0.4)

    print train
    print test
示例#4
0
def example2():
    target_url = (
        "https://archive.ics.uci.edu/ml/machine-learning-"
        "databases/undocumented/connectionist-bench/sonar/sonar.all-data")

    # Instantiate class
    ml = MLObject(target_url)

    # split the data into traning and test datasets
    train, test = ml.train_test_split(percentage=0.4)

    print train
    print test
示例#5
0
__author__ = 'shazada nawaz'

from monstera.core import MLObject

target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75]
prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5]

target_url = ("https://archive.ics.uci.edu/ml/machine-learning-databases"
              "/undocumented/connectionist-bench/sonar/sonar.all-data")

ml = MLObject(target_url)
ml.target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75]
ml.prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5]
ml.model_performance()
示例#6
0
__author__ = 'shazada nawaz'

from monstera.core import MLObject

target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75]
prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5]


target_url = ("https://archive.ics.uci.edu/ml/machine-learning-databases"
              "/undocumented/connectionist-bench/sonar/sonar.all-data")

ml = MLObject(target_url)
ml.target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75]
ml.prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5]
ml.model_performance()