def example1(): target_url = ("https://archive.ics.uci.edu/ml/machine-learning-" "databases/undocumented/connectionist-bench/sonar/sonar.all-data") # Instantiate class ml = MLObject(target_url) # output summary statistics ml.data_summary()
def example1(): target_url = ( "https://archive.ics.uci.edu/ml/machine-learning-" "databases/undocumented/connectionist-bench/sonar/sonar.all-data") # Instantiate class ml = MLObject(target_url) # output summary statistics ml.data_summary()
def example2(): target_url = ("https://archive.ics.uci.edu/ml/machine-learning-" "databases/undocumented/connectionist-bench/sonar/sonar.all-data") # Instantiate class ml = MLObject(target_url) # split the data into traning and test datasets train, test = ml.train_test_split(percentage=0.4) print train print test
def example2(): target_url = ( "https://archive.ics.uci.edu/ml/machine-learning-" "databases/undocumented/connectionist-bench/sonar/sonar.all-data") # Instantiate class ml = MLObject(target_url) # split the data into traning and test datasets train, test = ml.train_test_split(percentage=0.4) print train print test
__author__ = 'shazada nawaz' from monstera.core import MLObject target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75] prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5] target_url = ("https://archive.ics.uci.edu/ml/machine-learning-databases" "/undocumented/connectionist-bench/sonar/sonar.all-data") ml = MLObject(target_url) ml.target = [1.5, 2.1, 3.3, -4.7, -2.3, 0.75] ml.prediction = [0.5, 1.5, 2.1, -2.2, 0.1, -0.5] ml.model_performance()