示例#1
0
文件: rgb.py 项目: EDrabek/aplpy
def make_rgb_cube(files, output, north=False, system=None, equinox=None):
    '''
    Make an RGB data cube from a list of three FITS images.

    This method can read in three FITS files with different
    projections/sizes/resolutions and uses Montage to reproject
    them all to the same projection.

    Two files are produced by this function. The first is a three-dimensional
    FITS cube with a filename give by `output`, where the third dimension
    contains the different channels. The second is a two-dimensional FITS
    image with a filename given by `output` with a `_2d` suffix. This file
    contains the mean of the different channels, and is required as input to
    FITSFigure if show_rgb is subsequently used to show a color image
    generated from the FITS cube (to provide the correct WCS information to
    FITSFigure).

    Parameters
    ----------

    files : tuple or list
       A list of the filenames of three FITS filename to reproject.
       The order is red, green, blue.

    output : str
       The filename of the output RGB FITS cube.

    north : bool, optional
       By default, the FITS header generated by Montage represents the
       best fit to the images, often resulting in a slight rotation. If
       you want north to be straight up in your final mosaic, you should
       use this option.

    system : str, optional
       Specifies the system for the header (default is EQUJ).
       Possible values are: EQUJ EQUB ECLJ ECLB GAL SGAL

    equinox : str, optional
       If a coordinate system is specified, the equinox can also be given
       in the form YYYY. Default is J2000.
    '''

    # Check whether the Python montage module is installed. The Python module
    # checks itself whether the Montage command-line tools are available, and
    # if they are not then importing the Python module will fail.
    try:
        import montage_wrapper as montage
    except ImportError:
        raise Exception("Both the Montage command-line tools and the"
                        " montage-wrapper Python module are required"
                        " for this function")

    # Check that input files exist
    for f in files:
        if not os.path.exists(f):
            raise Exception("File does not exist : " + f)

    # Create work directory
    work_dir = tempfile.mkdtemp()

    raw_dir = '%s/raw' % work_dir
    final_dir = '%s/final' % work_dir

    images_raw_tbl = '%s/images_raw.tbl' % work_dir
    header_hdr = '%s/header.hdr' % work_dir

    # Create raw and final directory in work directory
    os.mkdir(raw_dir)
    os.mkdir(final_dir)

    # Create symbolic links to input files
    for i, f in enumerate(files):
        os.symlink(os.path.abspath(f), '%s/image_%i.fits' % (raw_dir, i))

    # List files and create optimal header
    montage.mImgtbl(raw_dir, images_raw_tbl, corners=True)
    montage.mMakeHdr(images_raw_tbl, header_hdr, north_aligned=north, system=system, equinox=equinox)

    # Read header in with astropy.io.fits
    header = fits.Header.fromtextfile(header_hdr)

    # Find image dimensions
    nx = int(header['NAXIS1'])
    ny = int(header['NAXIS2'])

    # Generate emtpy datacube
    image_cube = np.zeros((len(files), ny, nx), dtype=np.float32)

    # Loop through files
    for i in range(len(files)):

        # Reproject channel to optimal header
        montage.reproject('%s/image_%i.fits' % (raw_dir, i),
                          '%s/image_%i.fits' % (final_dir, i),
                          header=header_hdr, exact_size=True, bitpix=-32)

        # Read in and add to datacube
        image_cube[i, :, :] = fits.getdata('%s/image_%i.fits' % (final_dir, i))

    # Write out final cube
    fits.writeto(output, image_cube, header, clobber=True)

    # Write out collapsed version of cube
    fits.writeto(output.replace('.fits', '_2d.fits'), \
                   np.mean(image_cube, axis=0), header, clobber=True)

    # Remove work directory
    shutil.rmtree(work_dir)
示例#2
0
def mosaic(input_files, mosaic_file, work_dir, ext=0, background_match=False,
           cdelt=None, density=False, equinox=None, header=None,
           level_only=False, north_aligned=False, postprocess=None,
           preprocess=None, system=None, weights_file=None):
    """Make a mosiac.

    High-level wrapper around several Montage operations similar to
    `montage_wrapper.mosaic`. The main differences are 1) added support for
    preprocessing the input images before reprojection and postprocessing
    the final image after mosaicking, 2) options for using images in total
    flux units instead of flux density (as assumed by Montage), 3) more of
    the `montage_wrapper.mMakeHdr` keywords available for header creation,
    and 4) the `whole` keyword for `montage_wrapper.mProjExec` is
    automatically set to True when `background_match` is True. The latter
    is important since backround matching behaves unreliably otherwise.

    Parameters
    ----------
    input_files : list or string
        List of paths to the input images. This may also be the path to a
        directory containing all input images, in which case `input_files`
        will automatically be set to a list of all files in the directory
        ending with ".fits".
    mosaic_file : str
        Path to the output mosaic file. The final mosaic always has the
        same units as the `input_files` images.
    work_dir : str
        Path to the working directory for all intermediate files produced
        by Montage. The directory has the following structure::

          work_dir/
            input/
              Contains either symlinks to `input_files` or new files
              depending on the `preprocess` and `density` keywords.
              Assuming the `density` keyword has been set correctly, these
              images will always be in flux density units.
            reprojected/
              The reprojected images.
            differences/
              Difference calculations for background matching (only if
              `background_match` is True).
            corrected/
              Background-matched images (only if `background_match` is
              True).
            output/
              The intermediate mosiac used to produce the final mosaic
              file, depending on the `density` and `postprocess` keywords.

    background_match : bool, optional
        If True, match the background levels of the reprojected images
        before mosaicking. Automatically sets ``whole = True`` in
        `montage_wrapper.mProjExec`. Default is False.
    cdelt : float, optional
        See `header` and `montage_wrapper.mMakeHdr`. Default is None.
    density : bool, optional
        If True, the input images are in flux density units (i.e., signal
        per unit pixel area). If False (default), the input images are
        assumed to be in units of total flux, and are automatically scaled
        to flux density before reprojection.
    equinox : str, optional
        See `header` and `montage_wrapper.mMakeHdr`. Default is None.
    header : str, optional
        Path to the template header file describing the output mosaic.
        Default is None, in which case a template header is created
        automatically using `montage_wrapper.mMakeHdr` and the `cdelt`,
        `equinox`, `north_aligned`, and `system` keyword arguments.
    level_only : bool, optional
        See `montage_wrapper.mBgModel`. Ignored if `background_match` is
        False. Default is False.
    north_aligned : bool, optional
        See `header` and `montage_wrapper.mMakeHdr`. Default is None.
    postprocess, preprocess : function, optional
        Functions for processing the raw input images before the input
        density images are created (`preprocess`) and after the final
        mosaic is created (`postprocess`). The function arguments should be
        the image data array and the image header
        (`astropy.io.fits.Header`), and the return values should be the
        same. Default is None.
    system : str, optional
        See `header` and `montage_wrapper.mMakeHdr`. Default is None.
    weights_file : str, optional
        Path to output pixel weights file. Pixel weights are derived from
        the final mosaic area file. Weights are normalized to 1, and
        represent coverage of the mosaic area by the input images. Unlike
        Montage area files, regions where the input images overlap are not
        considered. Default is None.

    Returns
    -------
    None

    """
    # Get list of files if input_files is a directory name
    if isinstance(input_files, basestring):
        dirname = os.path.dirname(input_files)
        input_files = [os.path.join(dirname, basename)
                       for basename in os.listdir(dirname)
                       if os.path.splitext(basename)[1] == '.fits']

    # Create working directory
    try:
        os.makedirs(work_dir)
    except OSError:
        shutil.rmtree(work_dir)
        os.makedirs(work_dir)


    # Create input directory, populate it, and get image metadata
    input_dir = os.path.join(work_dir, 'input')
    os.mkdir(input_dir)

    if preprocess or not density or ext>0:
        # Create new input files
        for input_file in input_files:
            data, hdr = astropy.io.fits.getdata(input_file, header=True,
                                                ext=ext)
            if preprocess:
                data, hdr = preprocess(data, hdr)

            if not density:
                # Convert total flux into flux density
                dx, dy = wcs.calc_pixscale(hdr, ref='crpix').arcsec
                pixarea = dx * dy  # arcsec2
                data /= pixarea

            # Write
            basename = os.path.basename(input_file)
            basename = '_density'.join(os.path.splitext(basename))
            new_input_file = os.path.join(input_dir, basename)
            hdu = astropy.io.fits.PrimaryHDU(data=data, header=hdr)
            hdu.writeto(new_input_file, output_verify='ignore')

    else:
        # Symlink existing files
        for input_file in input_files:
            basename = os.path.basename(input_file)
            new_input_file = os.path.join(input_dir, basename)
            os.symlink(input_file, new_input_file)

    input_table = os.path.join(input_dir, 'input.tbl')
    montage.mImgtbl(input_dir, input_table, corners=True)

    # Template header
    if header is None:
        template_header = os.path.join(work_dir, 'template.hdr')
        montage.mMakeHdr(input_table, template_header, cdelt=cdelt,
                         equinox=equinox, north_aligned=north_aligned,
                         system=system)
    else:
        template_header = header

    # Create reprojection directory, reproject, and get image metadata
    proj_dir = os.path.join(work_dir, 'reprojected')
    os.makedirs(proj_dir)
    whole = True if background_match else False
    stats_table = os.path.join(proj_dir, 'mProjExec_stats.log')

    montage.mProjExec(input_table, template_header, proj_dir, stats_table,
                      raw_dir=input_dir, whole=whole)

    reprojected_table = os.path.join(proj_dir, 'reprojected.tbl')
    montage.mImgtbl(proj_dir, reprojected_table, corners=True)

    # Background matching
    if background_match:
        diff_dir = os.path.join(work_dir, 'differences')
        os.makedirs(diff_dir)

        # Find overlaps
        diffs_table = os.path.join(diff_dir, 'differences.tbl')
        montage.mOverlaps(reprojected_table, diffs_table)

        # Calculate differences between overlapping images
        montage.mDiffExec(diffs_table, template_header, diff_dir,
                          proj_dir=proj_dir)

        # Find best-fit plane coefficients
        fits_table = os.path.join(diff_dir, 'fits.tbl')
        montage.mFitExec(diffs_table, fits_table, diff_dir)

        # Calculate corrections
        corr_dir = os.path.join(work_dir, 'corrected')
        os.makedirs(corr_dir)
        corrections_table = os.path.join(corr_dir, 'corrections.tbl')
        montage.mBgModel(reprojected_table, fits_table, corrections_table,
                         level_only=level_only)

        # Apply corrections
        montage.mBgExec(reprojected_table, corrections_table, corr_dir,
                        proj_dir=proj_dir)

        img_dir = corr_dir

    else:
        img_dir = proj_dir


    # Make mosaic
    output_dir = os.path.join(work_dir, 'output')
    os.makedirs(output_dir)

    out_image = os.path.join(output_dir, 'mosaic.fits')
    montage.mAdd(reprojected_table, template_header, out_image,
                 img_dir=img_dir, exact=True)


    # Pixel areas and weights
    if weights_file or not density:
        area_file = '_area'.join(os.path.splitext(out_image))
        area, hdr = astropy.io.fits.getdata(area_file, header=True)  # steradians
        area *= (180/np.pi*3600)**2  # arcsec2
        dx, dy = wcs.calc_pixscale(hdr, ref='crpix').arcsec
        pixarea = dx * dy  # arcsec2
        area = np.clip(area, 0, pixarea)  # Don't care about overlaps
        if weights_file:
            weights = area / pixarea  # Normalize to 1
            hdu = astropy.io.fits.PrimaryHDU(weights, header=hdr)
            try:
                hdu.writeto(weights_file)
            except IOError:
                os.remove(weights_file)
                hdu.writeto(weights_file)


    # Write final mosaic
    dirname = os.path.dirname(mosaic_file)
    try:
        os.makedirs(dirname)
    except OSError:
        pass

    if postprocess or not density:
        # Create new file
        data, hdr = astropy.io.fits.getdata(out_image, header=True)

        if not density:
            # Convert flux density into total flux
            data *= pixarea

        if postprocess:
            data, hdr = postprocess(data, hdr)

        # Write
        hdu = astropy.io.fits.PrimaryHDU(data, header=hdr)
        try:
            hdu.writeto(mosaic_file)
        except IOError:
            os.remove(mosaic_file)
            hdu.writeto(mosaic_file)

    else:
        # Move existing file
        os.rename(out_image, mosaic_file)

    return
示例#3
0
文件: rgb.py 项目: migueldvb/aplpy
def make_rgb_cube(files, output, north=False, system=None, equinox=None):
    '''
    Make an RGB data cube from a list of three FITS images.

    This method can read in three FITS files with different
    projections/sizes/resolutions and uses Montage to reproject
    them all to the same projection.

    Two files are produced by this function. The first is a three-dimensional
    FITS cube with a filename give by `output`, where the third dimension
    contains the different channels. The second is a two-dimensional FITS
    image with a filename given by `output` with a `_2d` suffix. This file
    contains the mean of the different channels, and is required as input to
    FITSFigure if show_rgb is subsequently used to show a color image
    generated from the FITS cube (to provide the correct WCS information to
    FITSFigure).

    Parameters
    ----------

    files : tuple or list
       A list of the filenames of three FITS filename to reproject.
       The order is red, green, blue.

    output : str
       The filename of the output RGB FITS cube.

    north : bool, optional
       By default, the FITS header generated by Montage represents the
       best fit to the images, often resulting in a slight rotation. If
       you want north to be straight up in your final mosaic, you should
       use this option.

    system : str, optional
       Specifies the system for the header (default is EQUJ).
       Possible values are: EQUJ EQUB ECLJ ECLB GAL SGAL

    equinox : str, optional
       If a coordinate system is specified, the equinox can also be given
       in the form YYYY. Default is J2000.
    '''

    # Check whether the Python montage module is installed. The Python module
    # checks itself whether the Montage command-line tools are available, and
    # if they are not then importing the Python module will fail.
    try:
        import montage_wrapper as montage
    except ImportError:
        raise Exception("Both the Montage command-line tools and the"
                        " montage-wrapper Python module are required"
                        " for this function")

    # Check that input files exist
    for f in files:
        if not os.path.exists(f):
            raise Exception("File does not exist : " + f)

    # Create work directory
    work_dir = tempfile.mkdtemp()

    raw_dir = '%s/raw' % work_dir
    final_dir = '%s/final' % work_dir

    images_raw_tbl = '%s/images_raw.tbl' % work_dir
    header_hdr = '%s/header.hdr' % work_dir

    # Create raw and final directory in work directory
    os.mkdir(raw_dir)
    os.mkdir(final_dir)

    # Create symbolic links to input files
    for i, f in enumerate(files):
        os.symlink(os.path.abspath(f), '%s/image_%i.fits' % (raw_dir, i))

    # List files and create optimal header
    montage.mImgtbl(raw_dir, images_raw_tbl, corners=True)
    montage.mMakeHdr(images_raw_tbl,
                     header_hdr,
                     north_aligned=north,
                     system=system,
                     equinox=equinox)

    # Read header in with astropy.io.fits
    header = fits.Header.fromtextfile(header_hdr)

    # Find image dimensions
    nx = int(header['NAXIS1'])
    ny = int(header['NAXIS2'])

    # Generate emtpy datacube
    image_cube = np.zeros((len(files), ny, nx), dtype=np.float32)

    # Loop through files
    for i in range(len(files)):

        # Reproject channel to optimal header
        montage.reproject('%s/image_%i.fits' % (raw_dir, i),
                          '%s/image_%i.fits' % (final_dir, i),
                          header=header_hdr,
                          exact_size=True,
                          bitpix=-32)

        # Read in and add to datacube
        image_cube[i, :, :] = fits.getdata('%s/image_%i.fits' % (final_dir, i))

    # Write out final cube
    fits.writeto(output, image_cube, header, clobber=True)

    # Write out collapsed version of cube
    fits.writeto(output.replace('.fits', '_2d.fits'), \
                   np.mean(image_cube, axis=0), header, clobber=True)

    # Remove work directory
    shutil.rmtree(work_dir)
示例#4
0
def _montage_test():
    # create density images

    input_dir = os.path.dirname(density_files[0])

    # image metadata
    meta1_file = os.path.join(input_dir, 'meta1.tbl')
    montage.mImgtbl(input_dir, meta1_file, corners=True)

    # make header
    #lon, lat = [], []
    #for density_file in density_files:
    #    data, hdr = astropy.io.fits.getdata(density_file, header=True)
    #    wcs = astropy.wcs.WCS(hdr)
    #    x1, y1 = 0.5, 0.5
    #    y2, x2 = data.shape
    #    x2, y2 = x2 + 0.5, y2 + 0.5
    #    x, y = [x1, x2, x2, x1], [y1, y1, y2, y2]
    #    ln, lt = wcs.wcs_pix2world(x, y, 1)
    #    lon += list(ln)
    #    lat += list(lt)
    #lon1, lon2 = np.min(lon), np.max(lon)
    #lat1, lat2 = np.min(lat), np.max(lat)
    hdr_file = os.path.join(os.path.dirname(input_dir), 'test.hdr')
    montage.mMakeHdr(meta1_file, hdr_file)

    # reproject
    proj_dir = os.path.dirname(proj_files[0])
    safe_mkdir(proj_dir)
    stats_file = os.path.join(proj_dir, 'stats.tbl')
    montage.mProjExec(meta1_file, hdr_file, proj_dir, stats_file,
                      raw_dir=input_dir, exact=True)

    # image metadata
    meta2_file = os.path.join(proj_dir, 'meta2.tbl')
    montage.mImgtbl(proj_dir, meta2_file, corners=True)

    # Background modeling
    diff_dir = os.path.join(os.path.dirname(proj_dir), 'difference')
    safe_mkdir(diff_dir)
    diff_file = os.path.join(diff_dir, 'diffs.tbl')
    montage.mOverlaps(meta2_file, diff_file)
    montage.mDiffExec(diff_file, hdr_file, diff_dir, proj_dir)
    fits_file = os.path.join(diff_dir, 'fits.tbl')
    montage.mFitExec(diff_file, fits_file, diff_dir)

    # Background matching
    corr_dir = os.path.join(os.path.dirname(proj_dir), 'correct')
    safe_mkdir(corr_dir)
    corr_file = os.path.join(corr_dir, 'corrections.tbl')
    montage.mBgModel(meta2_file, fits_file, corr_file, level_only=False)
    montage.mBgExec(meta2_file, corr_file, corr_dir, proj_dir=proj_dir)

    # Native mosaic
    projadd_file = config.path('{:s}.reproject.add'.format(kind))
    projadd_dir, filename = os.path.split(projadd_file)
    filename, ext = os.path.splitext(filename)
    filename = '{0:s}_native{1:s}'.format(filename, ext)
    projaddnative_file = os.path.join(projadd_dir, filename)
    safe_mkdir(projadd_dir)
    montage.mAdd(meta2_file, hdr_file, projaddnative_file, img_dir=corr_dir, exact=True)

    # Reproject to final header
    header_file = config.path('{:s}.hdr'.format(kind))
    montage.mProject(projaddnative_file, projadd_file, header_file)

    # Postprocess
    data, hdr = astropy.io.fits.getdata(projaddnative_file, header=True)
    x1, x2 = 900, 1900
    y1, y2 = 3000, 4500
    val = np.mean(data[y1:y2,x1:x2])

    data, hdr = astropy.io.fits.getdata(projadd_file, header=True)
    data = data - val
    areaadd_file = config.path('{:s}.area.add'.format(kind))
    area = astropy.io.fits.getdata(areaadd_file) * (180/np.pi*3600)**2 # arcsec2
    data = data * area

    add_file = config.path('{:s}.add'.format(kind))
    dirname = os.path.dirname(add_file)
    safe_mkdir(dirname)
    if os.path.exists(add_file):
        os.remove(add_file)
    hdu = astropy.io.fits.PrimaryHDU(data, header=hdr)
    hdu.writeto(add_file)
示例#5
0
    def mosaic_band(self,band,ra,dec,margin,radius,pgc,survey,remove_bkgrd=False):
        '''
        Input: source info param
        Create a mosaic fit file for the specified band.
        Return: String filename of resulting mosaic
        '''
        print ("------------------mosaic_band----------------------")
        print ("Now mosaic_band on {}".format(pgc))
        output = open("../rc3_galaxies_outside_{}_footprint".format(survey.name),'a') # 'a' for append #'w')
        unclean = open("../rc3_galaxies_unclean_{}".format(survey.name),"a")
        filename = str(ra)+str(dec)
        if (DEBUG) : print ("Querying data that lies inside margin")
        print (ra,dec,margin)
        result = survey.data_server.surveyFieldConverter(float(ra),float(dec),float(margin))
        clean_result = survey.data_server.surveyFieldConverter(float(ra),float(dec),float(margin),True)
        clean = True
        if(DEBUG):print ("result: "+str(result))
        if(DEBUG):print ("clean_result: "+str(clean_result))
        
        if (len(result)!=len(clean_result)and band=='u'):
            # Only print this once in the u band. 
            # Assume that if it is unclean in u band (ex. cosmic ray, bright star..etc) then it must be unclean in the other bands too.
            print ("Data contain unclean images")
            clean=False
            unclean.write("{}     {}     {}     {} \n".format(self.rc3_ra,self.rc3_dec,self.rc3_radius,self.pgc))

        if (len(result)==0):             
            if (DEBUG): print ('The given ra, dec of this galaxy does not lie in the survey footprint. Onto the next galaxy!')#Exit Program.'
            output.write("{}     {}     {}     {} \n".format(str(ra),str(dec),str(radius),str(pgc)))
            return -1 #special value reserved for not in survey footprint galaxies
        else :
            if (DEBUG): 
                print ( "Complete Query. These data lies within margin: ")
                print (result)

        os.mkdir(band)
        os.chdir(band)
        os.mkdir ("rawdir")
        os.mkdir ("projdir")
        if (remove_bkgrd):
            os.mkdir ("diffdir")
            os.mkdir ("corrdir")
            # os.mkdir("final")

        if (DEBUG): print ("Retrieving data from server for "+ band +"band")
        os.chdir("rawdir")
        out=""
        # Raw Imaging Data naming
        for i in result :  
            if (survey.data_server.name=='Gator'):
                survey.data_server.getData(band,ra,dec,margin,survey)
                out = i # 2MASS designation
                print out
            elif (survey.data_server.name=='SkyServer'):
                survey.data_server.getData(band,str(i[0]), str(i[1]),str(i[2]))
                # run-camcol-field
                out = "frame-"+str(band)+"-"+str(i[0]).zfill(6)+"-"+str(i[1])+"-"+str(i[2]).zfill(4)
            elif (survey.data_server.name=='DSSServer'):
                survey.data_server.getData(band,ra,dec,margin)
                # Patch for when we can not pass in th pgc number in getData of dssServer class, we rename the file here to conform with RC3's filename expectation for the imaging data
                raw_data = glob.glob("raw_*.fits")
                print (raw_data)
                for i in raw_data:
                    os.rename(i,"DSS_{}_{}.fits".format(band, self.pgc))    
                out = "raw_{}_{}".format(band,self.pgc)
                print ("dss_out: "+out)
            else:
                raise TypeError("Missing implementation for data retrieval")
        os.chdir("../")
        if (DEBUG) : print("Creating mosaic for "+band+" band.")
        outfile_r = "{}_{}_{}r.fits".format(survey.name,band,self.pgc)
        outfile = "{}_{}_{}.fits".format(survey.name,band,self.pgc)
        if (len(result)==1):
            #With header info, len of processed result list is 1 if there is only 1 field lying in the margin, simply do mSubImage without mosaicing
            print ("Only one field in region of interest")
            os.chdir("rawdir")
            if (DEBUG):print ("m:{}".format(margin))
            try:
                if (DEBUG):print ("2m:{}".format(2*margin))
                if (DEBUG):print ([outfile_r,outfile,ra,dec,2*margin])
                montage.mSubimage(outfile,outfile,ra,dec,2*margin) # mSubImage takes xsize which should be twice the margin (margin measures center to edge of image)
            except(montage.status.MontageError):
                print ("montage_wrapper.status.MontageError: mSubimage: Region outside image.")
                try :#give it one last chance
                    if (DEBUG):print ("lastchancem:{}".format(margin))
                    montage.mSubimage(out+".fits",outfile,ra,dec,margin)
                except(montage.status.MontageError):
                    print("Doesn't work after trying half the margin, just keep the raw FITS file")
                    if (DEBUG):print (out+".fits")
                    if (DEBUG):print (outfile)
                    shutil.move(out+".fits","../..")
                    os.chdir("../../")
                    os.rename(out+".fits",outfile)
                    os.system("rm -r {}".format(survey.best_band))
                    return outfile
                if (DEBUG):print (os.getcwd())
                os.chdir("../../") #Get out of directory for that galaxy and move on
                os.system("rm -r {}".format(survey.best_band))
                if (DEBUG):print(os.getcwd())
                failed_msubimage = open ("failed_msubimage","a")
                failed_msubimage.write("{}     {}     {}     {} \n".format(str(ra),str(dec),str(radius),str(pgc)))
                return -1 # masking with special value reserved for not in survey footprint galaxies
        
            hdulist = pyfits.open(outfile)
            if (os.path.exists("../../"+outfile)):
                os.system("rm ../../"+outfile)
            shutil.move(outfile,"../..")
            os.chdir("../..")
        else:
            imgtbl="images-rawdir.tbl"
            hdr="template.hdr"
            montage.mImgtbl("rawdir",imgtbl)
            # montage.mHdr(str(ra)+" "+str(dec),margin,out+".hdr")
            montage.mMakeHdr(imgtbl,hdr)
            if (DEBUG): print ("Reprojecting images")
            # os.chdir("rawdir")
            if (DEBUG):print(os.getcwd())
            montage.mProjExec(imgtbl,hdr,"projdir", "stats.tbl",raw_dir="rawdir")#, mpi=enable_mpi,debug=True) 
            if os.listdir("projdir") == []: 
                print "Projection Failed. No projected images produced. Skip to the next galaxy" 
                os.chdir("../") #Get out of directory for that galaxy and move on
                os.system("rm -r {}".format(survey.best_band))
                failed_projection = open ("failed_projection","a")
                failed_projection.write("{}     {}     {}     {} \n".format(str(ra),str(dec),str(radius),str(pgc)))
                return -1 # masking with special value reserved for not in survey footprint galaxies
            if (remove_bkgrd): 
                if (DEBUG): print "Calling the bash script containing Montage routines to rectify the background" 
                if os.getcwd()[-4:-2]==str(pgc):
                    os.system("bash ../../mosaic.sh")
                else:
                    os.system("bash ../mosaic.sh")
                print "mSubimage"
                montage.mSubimage("mosaic.fits" ,"mosaic.fits",ra,dec,2*margin) # mSubImage takes xsize which should be twice the margin (margin measures center to edge of image)
                shutil.move("mosaic.fits","../{}".format(outfile_r))#if change to :-11 then move out of u,g,r,i,z directory, may be more convenient for mJPEG
                if (DEBUG) : print ("Completed Mosaic for " + band)
            else:
                montage.mImgtbl("projdir","pimages.tbl")
                os.chdir("projdir")
                montage.mAdd("../pimages.tbl","../"+hdr,"{}_{}.fits".format(survey.name,out))#, mpi=enable_mpi)
                montage.mSubimage("{}_{}.fits".format(survey.name,out),outfile_r,ra,dec,2*margin) # mSubImage takes xsize which should be twice the margin (margin measures center to edge of image)
                shutil.move(outfile_r,"../../{}".format(outfile_r) )#if change to :-11 then move out of u,g,r,i,z directory, may be more convenient for mJPEG
                if (DEBUG) : print ("Completed Mosaic for " + band)
                os.chdir("..")
            os.chdir("../")
            hdulist = pyfits.open(outfile_r)

        hdulist[0].header['RA']=float(ra)
        hdulist[0].header['DEC']=float(dec)
        hdulist[0].header['RADIUS']=radius
        if (DEBUG):print ("Finished mosaic_band on {}".format(pgc))
        hdulist[0].header['PGC']=pgc
        hdulist[0].header['NED']=("http://ned.ipac.caltech.edu/cgi-bin/objsearch?objname="+ str(hdulist[0].header['PGC'])+"&extend=no&hconst=73&omegam=0.27&omegav=0.73&corr_z=1&out_csys=Equatorial&out_equinox=J2000.0&obj_sort=RA+or+Longitude&of=pre_text&zv_breaker=30000.0&list_limit=5&img_stamp=YES")
        hdulist[0].header['CLEAN']=clean
        hdulist[0].header['MARGIN']=margin

        if (os.path.exists(outfile)):
            os.system("rm "+ outfile)
        hdulist.writeto(outfile)
        if (os.path.exists(outfile_r)):
            os.system("rm "+outfile_r)
        os.system("rm -r {}".format(band))
        return outfile