示例#1
0
 def greedy_iterations_maxchild(
         iterations: int = 100,
         exploration_weight: float = 0.0) -> 'MonteCarloTreeSearch':
     stop_cond = IterationsStoppingCondition(iterations=iterations)
     select_crit = MaxChild()
     return GreedyMCTS(stopping_condition=stop_cond,
                       selection_criteria=select_crit)
示例#2
0
 def uct_iterations_maxchild_random_expansion(
         iterations: int = 100,
         exploration_weight: float = 0.5) -> 'MonteCarloTreeSearch':
     stop_cond = IterationsStoppingCondition(iterations=iterations)
     select_crit = MaxChild()
     return UCTRandomExpansion(stopping_condition=stop_cond,
                               selection_criteria=select_crit,
                               exploration_weight=exploration_weight)
示例#3
0
 def uct_anytime_maxchild_random_expansion(
         seconds: int = 1,
         exploration_weight: float = 0.5) -> 'MonteCarloTreeSearch':
     stop_cond = AnytimeStoppingCondition(seconds=seconds)
     select_crit = MaxChild()
     return UCTRandomExpansion(stopping_condition=stop_cond,
                               selection_criteria=select_crit,
                               exploration_weight=exploration_weight)
示例#4
0
 def montecarlo_iterations_maxchild(
         iterations: int = 100) -> 'MonteCarloBasic':
     stop_cond = IterationsStoppingCondition(iterations=iterations)
     select_crit = MaxChild()
     return MonteCarloBasic(stopping_condition=stop_cond,
                            selection_criteria=select_crit)
示例#5
0
 def montecarlo_anytime_maxchild(seconds: int = 1) -> 'MonteCarloBasic':
     stop_cond = AnytimeStoppingCondition(seconds=seconds)
     select_crit = MaxChild()
     return MonteCarloBasic(stopping_condition=stop_cond,
                            selection_criteria=select_crit)