def sample_from_activation(self, vmap): p0 = self.probabilities_from_activation(vmap) s0 = samplers.multinomial(p0) s = s0[:, :, :-1] # chop off the last state (zero state) return s
def sample_from_activation(self, vmap): p = self.probabilities_from_activation(vmap) return samplers.multinomial(p)
def sample_from_activation(self, vmap): p0 = activation_functions.softmax_with_zero(vmap[self]) s0 = samplers.multinomial(p0) s = s0[:, :, :-1] # chop off the last state (zero state) return s
def sample_from_activation(self, vmap): p = activation_functions.softmax(vmap[self]) return samplers.multinomial(p)