def test_classify_image_mean_var_file(): """Classify an image from files using mean and variance.""" local = os.path.dirname(os.path.abspath(__file__)) example.get_sample(local) h, j, v, z = [os.path.join(local, f"{b}.fits") for b in "hjvz"] Classifier.classify(h=h, j=j, v=v, z=z, out_dir=local, out_type="mean_var") outs = dh.get_expected_morpheus_output(out_type="mean_var") for k in outs: np.testing.assert_allclose( outs[k], fits.getdata(os.path.join(local, f"{k}.fits")), atol=1e-5, err_msg=f"{k} failed comparison", ) os.remove(os.path.join(local, f"{k}.fits")) for b in "hjvz": os.remove(os.path.join(local, f"{b}.fits"))
def test_classify_mean_var_parallel_cpu(): """Classify an image in parallel with two cpus.""" local = os.path.dirname(os.path.abspath(__file__)) os.mkdir(os.path.join(local, "output")) out_dir = os.path.join(local, "output") example.get_sample(local) h, j, v, z = [os.path.join(local, f"{b}.fits") for b in "hjvz"] outs = dh.get_expected_morpheus_output(out_type="mean_var") classified = Classifier.classify( h=h, j=j, v=v, z=z, out_dir=out_dir, out_type="mean_var", cpus=2, parallel_check_interval=0.25, # check every 15 seconds ) for k in outs: np.testing.assert_allclose(outs[k], classified[k], atol=1e-5, err_msg=f"{k} failed comparison") shutil.rmtree(out_dir) for b in [h, j, v, z]: os.remove(b)
def test_sample_data_return(): """Tests sample_data function returning arrays.""" arrs = example.get_sample() expected_shape = (144, 144) for i in range(4): assert expected_shape == arrs[i].shape
def test_sample_data_save(): """Tests sample_data function saving to file.""" local = os.path.dirname(os.path.abspath(__file__)) example.get_sample(local) names = [f"{b}.fits" for b in ["h", "j", "v", "z"]] arrs = [] for name in names: f_loc = os.path.join(local, name) arrs.append(fits.getdata(f_loc)) os.remove(f_loc) expected_shape = (144, 144) for i in range(4): assert expected_shape == arrs[i].shape
def test_segmap_from_classified_fails(): """Test the segmap_from_classified method.""" data = dh.get_expected_morpheus_output() h, _, _, _ = example.get_sample() mask = np.zeros_like(h, dtype=np.int) mask[5:-5, 5:-5] = 1 with pytest.raises(ValueError): Classifier.segmap_from_classified(data, h, mask=mask, bkg_src_threshold=1.0)
def test_catalog_from_classified(): """Test the catalog_from_classified method.""" classified = dh.get_expected_morpheus_output() h, _, _, _ = example.get_sample() segmap = dh.get_expected_segmap()["segmap"] expected_catalog = dh.get_expected_catalog()["catalog"] actual_catalog = Classifier.catalog_from_classified(classified, h, segmap) assert expected_catalog == actual_catalog
def test_classify_image_rank_vote_in_mem(): """Classify an image in memory using rank vote.""" h, j, v, z = example.get_sample() expected_outs = dh.get_expected_morpheus_output() outs = Classifier.classify(h=h, j=j, v=v, z=z, out_dir=None) for k in outs: np.testing.assert_allclose(outs[k], expected_outs[k], err_msg=f"{k} failed comparison")
def test_segmap_from_classified(): """Test the segmap_from_classified method.""" data = dh.get_expected_morpheus_output() h, _, _, _ = example.get_sample() mask = np.zeros_like(h, dtype=np.int) mask[5:-5, 5:-5] = 1 expected_segmap = dh.get_expected_segmap()["segmap"] actual_segmap = Classifier.segmap_from_classified(data, h, mask=mask) np.testing.assert_array_equal(expected_segmap, actual_segmap)
def test_classify_image_mean_var(): """Classify an image from files using mean and variance.""" h, j, v, z = example.get_sample() outs = Classifier.classify(h=h, j=j, v=v, z=z, out_type="mean_var") expected_outs = dh.get_expected_morpheus_output(out_type="mean_var") for k in outs: np.testing.assert_allclose(outs[k], expected_outs[k], atol=1e-5, err_msg=f"{k} failed comparison")
# Copyright 2018 Ryan Hausen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ============================================================================== """Simple classification example reading from disk.""" from morpheus.classifier import Classifier from morpheus.data import example # this saves the sample numpy arrays as FITS files in 'out_dir' example.get_sample(out_dir=".") h, j, v, z = [f"{band}.fits" for band in "hjvz"] morphs = Classifier.classify(h=h, j=j, v=v, z=z)
# MIT License # Copyright 2018 Ryan Hausen # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ============================================================================== """Simple classification example in memory.""" from morpheus.classifier import Classifier from morpheus.data import example h, j, v, z = example.get_sample() morphs = Classifier.classify(h=h, j=j, v=v, z=z)