示例#1
0
文件: imio.py 项目: DerThorsten/ray
def raveler_to_labeled_volume(rav_export_dir, get_glia=False, 
                                            use_watershed=True, **kwargs):
    """Import a raveler export stack into a labeled segmented volume."""
    import morpho
    spmap = read_image_stack(
        os.path.join(rav_export_dir, 'superpixel_maps', '*.png'), **kwargs)
    sp2seg_list = numpy.loadtxt(
        os.path.join(rav_export_dir, 'superpixel_to_segment_map.txt'), uint32)
    seg2bod_list = numpy.loadtxt(
        os.path.join(rav_export_dir, 'segment_to_body_map.txt'), uint32)
    sp2seg = {}
    max_sp = sp2seg_list[:,1].max()
    start_plane = sp2seg_list[:,0].min()
    for z, sp, seg in sp2seg_list:
        if not sp2seg.has_key(z):
            sp2seg[z] = zeros(max_sp+1, uint32)
        sp2seg[z][sp] = seg
    max_seg = seg2bod_list[:,0].max()
    seg2bod = zeros(max_seg+1, uint32)
    seg2bod[seg2bod_list[:,0]] = seg2bod_list[:,1]
    initial_output_volume = zeros_like(spmap)
    for i, m in enumerate(spmap):
        j = start_plane + i
        initial_output_volume[i] = seg2bod[sp2seg[j][m]]
    probs = kwargs.get('probability_map', ones_like(spmap))
    output_volume = morpho.watershed(probs, seeds=initial_output_volume) \
        if use_watershed else initial_output_volume
    if get_glia:
        annots = json.load(
            open(os.path.join(rav_export_dir, 'annotations-body.json'), 'r'))
        glia = [a['body ID'] for a in annots['data'] 
                                        if a.get('comment', None) == 'glia']
        return output_volume, glia
    else:
        return output_volume
示例#2
0
def raveler_to_labeled_volume(rav_export_dir,
                              get_glia=False,
                              use_watershed=False,
                              **kwargs):
    """Import a raveler export stack into a labeled segmented volume."""
    import morpho
    spmap = read_image_stack(
        os.path.join(rav_export_dir, 'superpixel_maps', '*.png'), **kwargs)
    sp2seg_list = numpy.loadtxt(
        os.path.join(rav_export_dir, 'superpixel_to_segment_map.txt'), uint32)
    seg2bod_list = numpy.loadtxt(
        os.path.join(rav_export_dir, 'segment_to_body_map.txt'), uint32)
    sp2seg = {}
    max_sp = sp2seg_list[:, 1].max()
    start_plane = sp2seg_list[:, 0].min()
    for z, sp, seg in sp2seg_list:
        if not sp2seg.has_key(z):
            sp2seg[z] = zeros(max_sp + 1, uint32)
        sp2seg[z][sp] = seg
    max_seg = seg2bod_list[:, 0].max()
    seg2bod = zeros(max_seg + 1, uint32)
    seg2bod[seg2bod_list[:, 0]] = seg2bod_list[:, 1]
    initial_output_volume = zeros_like(spmap)
    for i, m in enumerate(spmap):
        j = start_plane + i
        initial_output_volume[i] = seg2bod[sp2seg[j][m]]
    probs = kwargs.get('probability_map', ones_like(spmap))
    output_volume = morpho.watershed(probs, seeds=initial_output_volume) \
        if use_watershed else initial_output_volume
    if (output_volume[:, 0, 0] == 0).all() and \
                        (output_volume == 0).sum() == output_volume.shape[0]:
        output_volume[:, 0, 0] = output_volume[:, 0, 1]
    if get_glia:
        annots = json.load(
            open(os.path.join(rav_export_dir, 'annotations-body.json'), 'r'))
        glia = [
            a['body ID'] for a in annots['data']
            if a.get('comment', None) == 'glia'
        ]
        return output_volume, glia
    else:
        return output_volume
示例#3
0
文件: imio.py 项目: cmor/gala
def raveler_to_labeled_volume(rav_export_dir, get_glia=False, 
                        use_watershed=False, probability_map=None, crop=None):
    """Import a raveler export stack into a labeled segmented volume.
    
    Parameters
    ----------
    rav_export_dir : string
        The directory containing the Raveler stack.
    get_glia : bool (optional, default False)
        Return the segment numbers corresponding to glia, if available.
    use_watershed : bool (optional, default False)
        Fill in 0-labeled voxels using watershed.
    probability_map : np.ndarray, same shape as volume to be read (optional)
        If `use_watershed` is True, use `probability_map` as the landscape. If
        this is not provided, it uses a flat landscape.
    crop : tuple of int (optional, default None)
        A 6-tuple of [xmin, xmax, ymin, ymax, zmin, zmax].

    Returns
    -------
    output_volume : np.ndarray, shape (Z, X, Y)
        The segmentation in the Raveler volume.
    glia : list of int (optional, only returned if `get_glia` is True)
        The IDs in the segmentation corresponding to glial cells.
    """
    import morpho
    spmap = read_image_stack(
        os.path.join(rav_export_dir, 'superpixel_maps', '*.png'), crop=crop)
    spmap = raveler_rgba_to_int(spmap)
    sp2seg_list = np.loadtxt(
        os.path.join(rav_export_dir, 'superpixel_to_segment_map.txt'), uint32)
    seg2bod_list = np.loadtxt(
        os.path.join(rav_export_dir, 'segment_to_body_map.txt'), uint32)
    sp2seg = {}
    max_sp = sp2seg_list[:,1].max()
    start_plane = sp2seg_list[:,0].min()
    for z, sp, seg in sp2seg_list:
        if not sp2seg.has_key(z):
            sp2seg[z] = zeros(max_sp+1, uint32)
        sp2seg[z][sp] = seg
    max_seg = seg2bod_list[:,0].max()
    seg2bod = zeros(max_seg+1, uint32)
    seg2bod[seg2bod_list[:,0]] = seg2bod_list[:,1]
    initial_output_volume = zeros_like(spmap)
    for i, m in enumerate(spmap):
        j = start_plane + i
        initial_output_volume[i] = seg2bod[sp2seg[j][m]]
    if use_watershed:
        probs = np.ones_like(spmap) if probability_map is None \
                                    else probability_map
        output_volume = morpho.watershed(probs, seeds=initial_output_volume)
    else:
        output_volume = initial_output_volume
    if (output_volume[:, 0, 0] == 0).all() and \
                        (output_volume == 0).sum() == output_volume.shape[0]:
        output_volume[:, 0, 0] = output_volume[:, 0, 1]
    if get_glia:
        annots = json.load(
            open(os.path.join(rav_export_dir, 'annotations-body.json'), 'r'))
        glia = [a['body ID'] for a in annots['data'] 
                                        if a.get('comment', None) == 'glia']
        return output_volume, glia
    else:
        return output_volume
示例#4
0
文件: imio.py 项目: cmor/gala
def raveler_to_labeled_volume(rav_export_dir,
                              get_glia=False,
                              use_watershed=False,
                              probability_map=None,
                              crop=None):
    """Import a raveler export stack into a labeled segmented volume.
    
    Parameters
    ----------
    rav_export_dir : string
        The directory containing the Raveler stack.
    get_glia : bool (optional, default False)
        Return the segment numbers corresponding to glia, if available.
    use_watershed : bool (optional, default False)
        Fill in 0-labeled voxels using watershed.
    probability_map : np.ndarray, same shape as volume to be read (optional)
        If `use_watershed` is True, use `probability_map` as the landscape. If
        this is not provided, it uses a flat landscape.
    crop : tuple of int (optional, default None)
        A 6-tuple of [xmin, xmax, ymin, ymax, zmin, zmax].

    Returns
    -------
    output_volume : np.ndarray, shape (Z, X, Y)
        The segmentation in the Raveler volume.
    glia : list of int (optional, only returned if `get_glia` is True)
        The IDs in the segmentation corresponding to glial cells.
    """
    import morpho
    spmap = read_image_stack(os.path.join(rav_export_dir, 'superpixel_maps',
                                          '*.png'),
                             crop=crop)
    spmap = raveler_rgba_to_int(spmap)
    sp2seg_list = np.loadtxt(
        os.path.join(rav_export_dir, 'superpixel_to_segment_map.txt'), uint32)
    seg2bod_list = np.loadtxt(
        os.path.join(rav_export_dir, 'segment_to_body_map.txt'), uint32)
    sp2seg = {}
    max_sp = sp2seg_list[:, 1].max()
    start_plane = sp2seg_list[:, 0].min()
    for z, sp, seg in sp2seg_list:
        if not sp2seg.has_key(z):
            sp2seg[z] = zeros(max_sp + 1, uint32)
        sp2seg[z][sp] = seg
    max_seg = seg2bod_list[:, 0].max()
    seg2bod = zeros(max_seg + 1, uint32)
    seg2bod[seg2bod_list[:, 0]] = seg2bod_list[:, 1]
    initial_output_volume = zeros_like(spmap)
    for i, m in enumerate(spmap):
        j = start_plane + i
        initial_output_volume[i] = seg2bod[sp2seg[j][m]]
    if use_watershed:
        probs = np.ones_like(spmap) if probability_map is None \
                                    else probability_map
        output_volume = morpho.watershed(probs, seeds=initial_output_volume)
    else:
        output_volume = initial_output_volume
    if (output_volume[:, 0, 0] == 0).all() and \
                        (output_volume == 0).sum() == output_volume.shape[0]:
        output_volume[:, 0, 0] = output_volume[:, 0, 1]
    if get_glia:
        annots = json.load(
            open(os.path.join(rav_export_dir, 'annotations-body.json'), 'r'))
        glia = [
            a['body ID'] for a in annots['data']
            if a.get('comment', None) == 'glia'
        ]
        return output_volume, glia
    else:
        return output_volume