示例#1
0
class ParticleFilter:
    '''
    Monte Carlo Localization based on odometry and a laser scanner.
    '''
    def __init__(self):

        # Get parameters
        self.particle_filter_frame = rospy.get_param("~particle_filter_frame")
        self.MAX_PARTICLES = int(rospy.get_param("~num_particles"))
        self.MAX_VIZ_PARTICLES = int(rospy.get_param("~max_viz_particles"))
        self.PUBLISH_ODOM = bool(rospy.get_param("~publish_odom", "1"))
        self.ANGLE_STEP = int(rospy.get_param("~angle_step"))
        self.DO_VIZ = bool(rospy.get_param("~do_viz"))

        # MCL algorithm
        self.iters = 0
        self.lidar_initialized = False
        self.odom_initialized = False
        self.map_initialized = False
        self.last_odom_pose = None  # last received odom pose
        self.last_stamp = None
        self.laser_angles = None
        self.downsampled_angles = None
        self.state_lock = Lock()

        # paritcles
        self.inferred_pose = None
        self.particles = np.zeros((self.MAX_PARTICLES, 3))
        self.particle_indices = np.arange(self.MAX_PARTICLES)
        self.weights = np.ones(self.MAX_PARTICLES) / float(self.MAX_PARTICLES)

        # Initialize the models
        self.motion_model = MotionModel()
        self.sensor_model = SensorModel()
        # initialize the state
        self.smoothing = Utils.CircularArray(10)
        self.timer = Utils.Timer(10)
        self.initialize_global()
        # map
        self.permissible_region = None

        self.SHOW_FINE_TIMING = False

        # these topics are for visualization
        self.pose_pub = rospy.Publisher("/pf/viz/inferred_pose",
                                        PoseStamped,
                                        queue_size=1)
        self.particle_pub = rospy.Publisher("/pf/viz/particles",
                                            PoseArray,
                                            queue_size=1)
        self.pub_fake_scan = rospy.Publisher("/pf/viz/fake_scan",
                                             LaserScan,
                                             queue_size=1)
        self.path_pub = rospy.Publisher('/pf/viz/path', Path, queue_size=1)
        self.path = Path()

        if self.PUBLISH_ODOM:
            self.odom_pub = rospy.Publisher("/pf/pose/odom",
                                            Odometry,
                                            queue_size=1)

        # these topics are for coordinate space things
        self.pub_tf = tf.TransformBroadcaster()

        # these topics are to receive data from the racecar
        self.laser_sub = rospy.Subscriber(rospy.get_param(
            "~scan_topic", "/scan"),
                                          LaserScan,
                                          self.callback_lidar,
                                          queue_size=1)
        self.odom_sub = rospy.Subscriber(rospy.get_param(
            "~odom_topic", "/odom"),
                                         Odometry,
                                         self.callback_odom,
                                         queue_size=1)
        self.pose_sub = rospy.Subscriber("/initialpose",
                                         PoseWithCovarianceStamped,
                                         self.clicked_pose,
                                         queue_size=1)
        self.click_sub = rospy.Subscriber("/clicked_point",
                                          PointStamped,
                                          self.clicked_pose,
                                          queue_size=1)

        print "Finished initializing, waiting on messages..."

    def initialize_global(self):
        '''
        Spread the particle distribution over the permissible region of the state space.
        '''
        print("GLOBAL INITIALIZATION")
        # randomize over grid coordinate space
        self.state_lock.acquire()

        print('Waiting for map..')
        while not self.sensor_model.map_set:
            continue

        self.map_initialized = True
        self.permissible_region = self.sensor_model.permissible_region
        self.map = self.sensor_model.map
        self.map_info = self.sensor_model.map_info

        permissible_x, permissible_y = np.where(self.permissible_region == 1)
        indices = np.random.randint(0,
                                    len(permissible_x),
                                    size=self.MAX_PARTICLES)

        permissible_states = np.zeros((self.MAX_PARTICLES, 3))
        permissible_states[:, 0] = permissible_y[indices]
        permissible_states[:, 1] = permissible_x[indices]
        permissible_states[:, 2] = np.random.random(
            self.MAX_PARTICLES) * np.pi * 2.0

        Utils.map_to_world(permissible_states, self.map_info)
        self.particles = permissible_states
        self.weights[:] = 1.0 / self.MAX_PARTICLES
        self.state_lock.release()

    def initialize_particles_pose(self, pose):
        '''
        Initialize particles in the general region of the provided pose.
        '''
        print "SETTING POSE"
        print pose
        self.state_lock.acquire()
        self.weights = np.ones(self.MAX_PARTICLES) / float(self.MAX_PARTICLES)
        self.particles[:, 0] = pose.position.x + np.random.normal(
            loc=0.0, scale=0.5, size=self.MAX_PARTICLES)
        self.particles[:, 1] = pose.position.y + np.random.normal(
            loc=0.0, scale=0.5, size=self.MAX_PARTICLES)
        self.particles[:, 2] = Utils.quaternion_to_angle(
            pose.orientation) + np.random.normal(
                loc=0.0, scale=0.4, size=self.MAX_PARTICLES)

        self.state_lock.release()

    def clicked_pose(self, msg):
        '''
        Receive pose messages from RViz and initialize the particle distribution in response.
        '''
        print('clicked_pose')
        if isinstance(msg, PointStamped):
            self.initialize_particles_pose(msg.pose.pose)
            #self.initialize_global()
        elif isinstance(msg, PoseWithCovarianceStamped):
            self.initialize_particles_pose(msg.pose.pose)

    def publish_tf(self, pose, stamp=None):
        """ Publish a tf for the car. This tells ROS where the car is with respect to the map. """
        if stamp == None:
            stamp = rospy.Time.now()

        # this may cause issues with the TF tree. If so, see the below code.
        self.pub_tf.sendTransform(
            (pose[0], pose[1], 0),
            tf.transformations.quaternion_from_euler(0, 0, pose[2]), stamp,
            "/laser", "/map")

        # also publish odometry to facilitate getting the localization pose
        if self.PUBLISH_ODOM:
            odom = Odometry()
            odom.header = Utils.make_header("/map", stamp)
            odom.pose.pose.position.x = pose[0]
            odom.pose.pose.position.y = pose[1]
            odom.pose.pose.orientation = Utils.angle_to_quaternion(pose[2])
            self.odom_pub.publish(odom)
        """
        Our particle filter provides estimates for the "laser" frame
        since that is where our laser range estimates are measure from. Thus,
        We want to publish a "map" -> "laser" transform.
        However, the car's position is measured with respect to the "base_link"
        frame (it is the root of the TF tree). Thus, we should actually define
        a "map" -> "base_link" transform as to not break the TF tree.
        """

        # Get map -> laser transform.
        map_laser_pos = np.array((pose[0], pose[1], 0))
        map_laser_rotation = np.array(
            tf.transformations.quaternion_from_euler(0, 0, pose[2]))
        # Apply laser -> base_link transform to map -> laser transform
        # This gives a map -> base_link transform
        laser_base_link_offset = (0.265, 0, 0)
        map_laser_pos -= np.dot(
            tf.transformations.quaternion_matrix(
                tf.transformations.unit_vector(map_laser_rotation))[:3, :3],
            laser_base_link_offset).T

        # Publish transform
        self.pub_tf.sendTransform(map_laser_pos, map_laser_rotation, stamp,
                                  self.particle_filter_frame, "/map")

    def publish_particles(self, particles):
        pa = PoseArray()
        pa.header = Utils.make_header("map")
        pa.poses = Utils.particles_to_poses(particles)
        self.particle_pub.publish(pa)

    def publish_scan(self, angles, ranges):
        ls = LaserScan()
        ls.header = Utils.make_header("laser", stamp=self.last_stamp)
        ls.angle_min = np.min(angles)
        ls.angle_max = np.max(angles)
        ls.angle_increment = np.abs(angles[0] - angles[1])
        ls.range_min = 0
        ls.range_max = np.max(ranges)
        ls.ranges = ranges
        self.pub_fake_scan.publish(ls)

    def visualize(self):
        '''
        Publish various visualization messages.
        '''
        if not self.DO_VIZ:
            return

        if self.pose_pub.get_num_connections() > 0 and isinstance(
                self.inferred_pose, np.ndarray):
            ps = PoseStamped()
            ps.header = Utils.make_header("map")
            ps.pose.position.x = self.inferred_pose[0]
            ps.pose.position.y = self.inferred_pose[1]
            ps.pose.orientation = Utils.angle_to_quaternion(
                self.inferred_pose[2])
            self.pose_pub.publish(ps)
            if self.iters % 10 == 0:
                self.path.header = ps.header
                self.path.poses.append(ps)
                self.path_pub.publish(self.path)

        if self.particle_pub.get_num_connections() > 0:
            if self.MAX_PARTICLES > self.MAX_VIZ_PARTICLES:
                # randomly downsample particles
                proposal_indices = np.random.choice(self.particle_indices,
                                                    self.MAX_VIZ_PARTICLES,
                                                    p=self.weights)
                # proposal_indices = np.random.choice(self.particle_indices, self.MAX_VIZ_PARTICLES)
                self.publish_particles(self.particles[proposal_indices, :])
            else:
                self.publish_particles(self.particles)

        if self.pub_fake_scan.get_num_connections() > 0 and isinstance(
                self.sensor_model.particle_scans, np.ndarray):
            # generate the scan from the point of view of the inferred position for visualization
            inferred_scans = self.sensor_model.get_scans(
                self.inferred_pose[None, :])
            self.publish_scan(self.downsampled_angles, inferred_scans[0, :])

    def callback_lidar(self, msg):
        '''
        Initializes reused buffers, and stores the relevant laser scanner data for later use.
        '''
        if not isinstance(self.laser_angles, np.ndarray):
            print "...Received first LiDAR message"
            self.laser_angles = np.linspace(msg.angle_min, msg.angle_max,
                                            len(msg.ranges))
            self.downsampled_angles = np.copy(
                self.laser_angles[0::self.ANGLE_STEP]).astype(np.float32)
            #self.viz_queries = np.zeros((self.downsampled_angles.shape[0],3), dtype=np.float32)
            #self.viz_ranges = np.zeros(self.downsampled_angles.shape[0], dtype=np.float32)
            #print self.downsampled_angles.shape[0]
        self.downsampled_ranges = np.array(msg.ranges[::self.ANGLE_STEP])
        self.lidar_initialized = True

    def callback_odom(self, msg):
        '''
        Store deltas between consecutive odometry messages in the coordinate space of the car.
        Odometry data is accumulated via dead reckoning, so it is very inaccurate on its own.
        '''
        position = np.array(
            [msg.pose.pose.position.x, msg.pose.pose.position.y])
        orientation = Utils.quaternion_to_angle(msg.pose.pose.orientation)
        pose = np.array([position[0], position[1], orientation])

        if isinstance(self.last_odom_pose, np.ndarray):
            rot = Utils.rotation_matrix(-self.last_odom_pose[2])
            delta = np.array([position - self.last_odom_pose[0:2]]).transpose()
            local_delta = (rot * delta).transpose()

            # changes in x,y,theta in local coordinate system of the car
            self.odometry_data = np.array([
                local_delta[0, 0], local_delta[0, 1],
                orientation - self.last_odom_pose[2]
            ])
            self.last_odom_pose = pose
            self.last_stamp = msg.header.stamp
            self.odom_initialized = True
        else:
            print "...Received first Odometry message"
            self.last_odom_pose = pose

        # this topic is slower than lidar, so update every time we receive a message
        self.update()

    def expected_pose(self, particles):
        # returns the expected value of the pose given the particle distribution
        return np.dot(particles.transpose(), self.weights)

    def MCL(self, odom, scans):
        # Implement the MCL algorithm
        # using the sensor model and the motion model
        #
        # Make sure you include some way to initialize
        # your particles, ideally with some sort
        # of interactive interface in rviz
        proposal_indices = np.random.choice(self.particle_indices,
                                            self.MAX_PARTICLES,
                                            p=self.weights)
        proposal_distribution = self.particles[proposal_indices, :]
        if self.SHOW_FINE_TIMING:
            t_propose = time.time()
        #print("resample",self.expected_pose(proposal_distribution))
        # compute the motion model to update the proposal distribution
        proposal_distribution = self.motion_model.evaluate(
            proposal_distribution, odom)
        if self.SHOW_FINE_TIMING:
            t_motion = time.time()
        #print("motion model:", self.expected_pose(proposal_distribution))

        # compute the sensor model
        self.weights = self.sensor_model.evaluate(proposal_distribution, scans)

        if self.SHOW_FINE_TIMING:
            t_sensor = time.time()

        # normalize importance weights
        self.weights /= np.sum(self.weights)
        #print("sensor model:", self.expected_pose(proposal_distribution))

        if self.SHOW_FINE_TIMING:
            t_norm = time.time()
            t_total = (t_norm - t) / 100.0

        if self.SHOW_FINE_TIMING and self.iters % 10 == 0:
            print "MCL: propose: ", np.round((t_propose-t)/t_total, 2), "motion:", np.round((t_motion-t_propose)/t_total, 2), \
                  "sensor:", np.round((t_sensor-t_motion)/t_total, 2), "norm:", np.round((t_norm-t_sensor)/t_total, 2)

        # save the particles
        self.particles = proposal_distribution

        #print(self.expected_pose(self.particles))

        # Publish a transformation frame between the map
        # and the particle_filter_frame.

    def update(self):
        '''
        Apply the MCL function to update particle filter state. 
        Ensures the state is correctly initialized, and acquires the state lock before proceeding.
        '''
        if self.lidar_initialized and self.odom_initialized and self.map_initialized:
            if self.state_lock.locked():
                print("Concurrency error avoided")
            else:
                self.state_lock.acquire()
                self.timer.tick()
                self.iters += 1

                t1 = time.time()
                scans = np.copy(self.downsampled_ranges).astype(np.float32)
                odom = np.copy(self.odometry_data)
                self.odometry_data = np.zeros(3)

                # run the MCL update algorithm
                self.MCL(odom, scans)

                # compute the expected value of the robot pose
                self.inferred_pose = self.expected_pose(self.particles)
                self.state_lock.release()
                t2 = time.time()

                # publish transformation frame based on inferred pose
                self.publish_tf(self.inferred_pose, self.last_stamp)

                # this is for tracking particle filter speed
                ips = 1.0 / (t2 - t1)
                self.smoothing.append(ips)
                if self.iters % 10 == 0:
                    print "iters per sec:", int(
                        self.timer.fps()), " possible:", int(
                            self.smoothing.mean())

                self.visualize()
示例#2
0
class ParticleFilter:

    # toggle robot driving in a circle in the simulator
    DRIVING = True
    # set to True if working in the simulator, else False
    SIM = True
    """
    *** IF WORKING ON THE REAL ROBOT: ***
    - in params.yaml:
        - change particle_filter_frame from 'base_link_pf' to 'base_link'
        - change odom_topic from '/odom' to '/vesc/odom'
    - in localize.launch:
        - uncomment out region that initializes map server to use stata basement map
    - use SIM = False and DRIVING = False
    """
    def __init__(self):
        # using locks so threads can't access self.particles at the same time (avoiding race condition)
        self.lock = Lock()

        self.lock.acquire()

        # Get parameters
        self.particle_filter_frame = \
                rospy.get_param("~particle_filter_frame") # should be '/base_link_pf' in sim and '/base_link' on car

        # Initialize the models
        self.motion_model = MotionModel()
        self.sensor_model = SensorModel()

        # Topics
        self.odom_topic = rospy.get_param("~odom_topic")
        self.scan_topic = rospy.get_param("~scan_topic")
        self.particle_marker_topic = '/particle_marker'
        self.click_topic = '/move_base_simple/goal'
        self.pose_array_topic = '/pose_array'
        self.inferred_pose_topic = '/inferred_pose'

        self.error_x_topic = '/error_x'
        self.error_y_topic = '/error_y'
        self.error_t_topic = '/error_t'

        # Subscribers and Publishers
        rospy.Subscriber(
            self.odom_topic, Odometry,
            self.odom_callback)  # '/odom' for sim and 'vesc/odom' for car
        rospy.Subscriber(self.scan_topic, LaserScan, self.scan_callback)

        self.tf_broadcaster = TransformBroadcaster()

        # Listening to clicks in rviz and publishing particle markers to rviz
        rospy.Subscriber(self.click_topic, PoseStamped, self.click_callback)
        self.particle_marker_pub = rospy.Publisher(self.particle_marker_topic,
                                                   Marker,
                                                   queue_size=1)
        self.pose_array_pub = rospy.Publisher(self.pose_array_topic,
                                              PoseArray,
                                              queue_size=1)
        self.inferred_pose_pub = rospy.Publisher(self.inferred_pose_topic,
                                                 Marker,
                                                 queue_size=1)

        self.error_x_pub = rospy.Publisher(self.error_x_topic,
                                           Float32,
                                           queue_size=1)
        self.error_y_pub = rospy.Publisher(self.error_y_topic,
                                           Float32,
                                           queue_size=1)
        self.error_t_pub = rospy.Publisher(self.error_t_topic,
                                           Float32,
                                           queue_size=1)

        self.rate = rospy.Rate(30)  # should be greater than 20 Hz

        # Implement the MCL algorithm
        # using the sensor model and the motion model
        #
        # Make sure you include some way to initialize
        # your particles, ideally with some sort
        # of interactive interface in rviz
        #
        # Publish a transformation frame between the map
        # and the particle_filter_frame.

        # Initializing particles and weights
        self.num_particles = rospy.get_param('~num_particles')
        # currently intializing all particles as origin
        self.particles = np.zeros((self.num_particles, 3))
        # all particles are initially equally likely
        self.weights = np.full((self.num_particles), 1. / self.num_particles)

        # for error calculations
        self.groundtruth = [0, 0, 0]

        # send drive commands to test in sim
        self.drive_pub = rospy.Publisher('/drive',
                                         AckermannDriveStamped,
                                         queue_size=1)
        self.drive_msg = AckermannDriveStamped()
        self.drive_msg.drive.steering_angle = 0
        self.drive_msg.drive.speed = 1

        if self.SIM == False:  # don't toggle on driving if working on real robot
            self.DRIVE = False

        self.publish_transform()

        self.lock.release()

    def odom_callback(self, odom_data):
        '''
        whenever you get odometry data, use the motion model to update the particle positions
        determine the "average" particle pose and publish that transform
        :param odom_data: odometry data (type - Odometry)
        :return: no return, but updates self.particles positions and publishes transform
        '''
        self.lock.acquire()
        #start = time()

        x = odom_data.pose.pose.position.x
        y = odom_data.pose.pose.position.y
        q_w = odom_data.pose.pose.orientation.w
        q_z = odom_data.pose.pose.orientation.z
        euler = transformations.euler_from_quaternion(
            np.array([0, 0, q_z, q_w]))
        self.groundtruth = [x, y, euler]

        self.particles = self.motion_model.evaluate(
            self.particles,
            self.motion_model.get_delta_x(odom_data),
            noise=0.2)

        self.publish_transform()

        #end = time()
        #print('odom_callback time:', end-start)
        self.lock.release()

    def scan_callback(self, scan_data):
        '''
        whenever you get sensor data, use the sensor model to compute the particle probabilities. Then resample the particles based on these probabilities
        determine the "average" particle pose and publish that transform
        :param scan_data: scan data (type - LaserScan)
        :return: no return, but updates self.particles by resampling particles and publishes transform
        '''
        self.lock.acquire()

        probabilities = self.sensor_model.evaluate(self.particles,
                                                   scan_data,
                                                   downsample=20,
                                                   sim=self.SIM)

        # if map wasn't initialized in sensor_model, probabilites=None
        if isinstance(probabilities, type(None)):
            self.lock.release()
            rospy.loginfo('no probabilities to use in scan_callback')
            return

        smooth_p = np.power(probabilities, [1 / 3.] * len(probabilities))

        self.weights = smooth_p / np.sum(
            smooth_p)  # normalize weights so they sum to 1

        # resample particles based on weights
        self.particles = self.resample_particles()

        self.publish_transform()

        self.lock.release()

    def resample_particles(self):
        '''
        reseample particles based on their probability weights
        allow repeats of particles; to not allow, use replace=False
        '''
        # choose with indices in particles array to keep using probabilities as weights
        indices = np.random.choice(self.num_particles,
                                   self.num_particles,
                                   p=self.weights)
        # return particles with chosen indices
        return self.particles[indices]

    def publish_transform(self):
        '''
        anytime the particles are updated, determine the 'average' particle pose and broadcast that transform
        :return: no return, but broadcast transform between 'map' frame and self.particle_filter_frame
        '''
        x_avg, y_avg, theta_avg = self.avg_pose()

        q = transformations.quaternion_from_euler(0, 0, theta_avg)

        # broadcast transformation
        self.tf_broadcaster.sendTransform(
            (x_avg, y_avg, 0), q, rospy.Time.now(), self.particle_filter_frame,
            'map')

        self.publish_pose_array()
        #self.publish_particle_markers()

        # Driving in the simulator
        if self.DRIVING:
            self.drive_pub.publish(self.drive_msg)

        # publish inferred position in rviz as arrow
        if self.inferred_pose_pub.get_num_connections > 0:
            a = Marker()
            a.header.frame_id = 'map'
            a.type = Marker.ARROW
            a.color = ColorRGBA(0, 1, 1, 1)

            a.scale.x = 0.5
            a.scale.y = 0.1
            a.scale.z = 0.1

            q = transformations.quaternion_from_euler(0, 0, theta_avg)
            quat = Quaternion()
            quat.x = q[0]
            quat.y = q[1]
            quat.z = q[2]
            quat.w = q[3]

            a.pose.position.x = x_avg
            a.pose.position.y = y_avg
            a.pose.orientation = quat

            self.inferred_pose_pub.publish(a)

        # for error plots
        try:
            x, y, theta = self.groundtruth
            x_error = x_avg - x
            y_error = y_avg - y
            t_error = theta_avg - theta[2]
            self.error_x_pub.publish(x_error)
            self.error_y_pub.publish(y_error)
            self.error_t_pub.publish(t_error)
        except Exception as e:
            rospy.loginfo(e)

    def avg_pose(self):
        '''
        determine the average particle pose
        ** have to use mean of circular quantities for theta
        ** distirbution might be multi modal
        :param: no params, but uses instance variable self.particles
        :return: average particle pose as [x, y, theta]
        '''
        x = np.mean(self.particles[:, 0])
        y = np.mean(self.particles[:, 1])
        # circular mean is angle between average x component and y component of the angles data
        theta = np.arctan2(np.mean(np.sin(self.particles[:, 2])),
                           np.mean(np.cos(self.particles[:, 2])))

        return [x, y, theta]

    def click_callback(self, pose_data):
        '''
        use click in rviz to initialize particles
        :param pose_data: pose of rviz click (type - PoseStamped)
        use 2D Nav Goal to guess car location
        :return: no return, but updates self.particles
        '''
        self.lock.acquire()

        x = pose_data.pose.position.x
        y = pose_data.pose.position.y
        q = pose_data.pose.orientation
        theta = transformations.euler_from_quaternion([q.x, q.y, q.z, q.w])[2]

        # random points from normal distribution centered at [x, y, theta]
        self.particles = np.random.normal([x, y, theta], 1,
                                          (self.num_particles, 3))
        self.weights = np.full((self.num_particles), 1. / self.num_particles)

        self.publish_pose_array()
        #self.publish_particle_markers()

        self.lock.release()

    def publish_particle_markers(self):
        '''
        publish particles as markers in rviz
        '''
        # if something is listening for marker publications
        if self.particle_marker_pub.get_num_connections > 0:
            m = Marker()
            m.header.frame_id = 'map'
            m.type = Marker.POINTS
            #m.color = ColorRGBA(1, 0, 0, 1)

            m.scale.x = 0.2
            m.scale.y = 0.2
            m.scale.z = 0.2

            for i in range(len(self.particles)):
                p = self.particles[i]
                w = self.weights[i]
                m.points.append(Point(p[0], p[1], 0))
                m.colors.append(self.prob_to_color(w))

            self.particle_marker_pub.publish(m)

    def prob_to_color(self, prob):
        '''
        convert a probability to a color
        red is high probability
        orange
        yellow
        green
        cyan
        light blue
        blue
        purple
        magenta
        black is low
        :param prob: probability between 0 and 1
        :return: ColorRBGA corresponding to prob
        '''
        m = max(self.weights)  # max weight
        if prob > m * 0.9:
            return ColorRGBA(1, 0, 0, 1)
        if prob > m * 0.8:
            return ColorRGBA(1, 0.5, 0, 1)
        if prob > m * 0.7:
            return ColorRGBA(1, 1, 0, 1)
        if prob > m * 0.6:
            return ColorRGBA(0, 1, 0, 1)
        if prob > m * 0.5:
            return ColorRGBA(0, 1, 1, 1)
        if prob > m * 0.4:
            return ColorRGBA(0, 0.5, 1, 1)
        if prob > m * 0.3:
            return ColorRGBA(0, 0, 1, 1)
        if prob > m * 0.2:
            return ColorRGBA(0.5, 0, 1, 1)
        if prob > m * 0.1:
            return ColorRGBA(1, 0, 1, 1)
        else:
            return ColorRGBA(0, 0, 0, 1)

    def publish_pose_array(self):
        '''
        publish arrows in rviz for to visualize particles
        '''
        particles = np.copy(self.particles)
        if self.pose_array_topic > 0:
            pa = PoseArray()
            pa.header.frame_id = 'map'
            for p in particles[:20]:
                pose = Pose()
                pose.position = Point(p[0], p[1], 0)
                q = transformations.quaternion_from_euler(0, 0, p[2])
                quat = Quaternion()
                quat.x = q[0]
                quat.y = q[1]
                quat.z = q[2]
                quat.w = q[3]
                pose.orientation = quat
                pa.poses.append(pose)
            self.pose_array_pub.publish(pa)