示例#1
0
class Splitter(object):
    """cette classe gère la séparation des données. Permet de feeder une
    séquence de choplo et export les moves en list."""

    def __init__(self, repetition):
        from moves import Moves

        self.repetition = repetition
        Move.move_num = 0

        self.current_move = None
        self.moves = Moves([])
        self.index = None

    def create_moves(self):
        self.index = 1
        while self.index < len(self.repetition):
            drop_last = self.repetition.splitter_info.drop_in[self.index - 1]
            vasque_last = self.repetition.splitter_info.vasque_start[self.index - 1]  # could be useful someday
            drop_current = self.repetition.splitter_info.drop_in[self.index]
            vasque_current = self.repetition.splitter_info.vasque_start[self.index]  # could be useful someday

            self.on_event(drop_current, vasque_current, drop_last, vasque_last)
            self.index += 1
        self.save_move()  # essential to save the last move

    def on_event(self, drop_current, vasque_current, drop_last, vasque_last):
        """Permet d'eviter de rentrer dans les conditions a chaque index, si none.. rien ne se passe """
        if drop_last == 0 and drop_current == 1:
            self.drop_in()
        elif drop_last == 1 and drop_current == 0:
            self.drop_end()

        if vasque_last==0 and vasque_current==1:
            self.vasque_in()
        elif vasque_last==1 and vasque_current==0:
            self.vasque_out()

    def drop_in(self):
        if self.current_move is not None:
            self.save_move()

        self.initialise_move()
    def drop_end(self):
        # print("Drop end")
        # print(self.current_move.start_index - self.index, abs(self.current_move.start_index - self.index))
        self.current_move.drop_end = abs(self.current_move.drop_in_index - self.index)
    def vasque_in(self):
        if self.current_move is not None:
            if self.current_move.vasque_in is not None:
                self.current_move.vasque_in = abs(self.current_move.drop_in_index - self.index)

    def vasque_out(self):
        if self.current_move is not None:
            if self.current_move.vasque_in is not None:
                self.current_move.vasque_out = abs(self.current_move.drop_in_index - self.index)


    def initialise_move(self):
        self.current_move = Move()
        self.current_move.drop_in_index = self.index

    def save_move(self):
        self.current_move.end_idx = self.index - 1
        self.current_move.set_data_from_splitter(copy(self.repetition))
        # print(self.current_move.drop_end)
        self.moves.append(copy(self.current_move))

    def get_moves(self, limit):
        return self.moves.list_of_moves[:limit]
示例#2
0
class DescribePlayers:
    def __init__(self,
                 _players,
                 describe_att_name=None,
                 dtype_att=[
                     "COF", "COM", "C7", "angle_lower", "angle_trunk", "phase"
                 ]):
        """Allows to calculate the mean of a move_id or mean_arr of a group of player

        :parameter _players: an Instance of Players
        :parameter move_id: the id of the move to look at
        :parameter dtype_att: the data instance from maindata to look att
        :parameter mean_att: all the instance of MeanMove to consider if move_id is None

        :type _players: Players
        :type move_id: int
        :type dtype_att: list
        :type mean_att: list
        """
        self._players = deepcopy(_players)
        self._players.equalise_length(mode='min')
        # TODO is taking the id 0 robust? need change?
        self.num_move_per_player = len(_players[0].__dict__[describe_att_name])
        self.dtype_att = dtype_att
        self.describe_att_name = describe_att_name

        self.lst_moves = deepcopy(
            list(range(0, len(_players[0].__dict__[self.describe_att_name]))))
        # self.lst_moves = self.get_lst_move()
        # print("players list moves", self.lst_moves)
        self._mean = None  # mean de tous les moves pour tous les joueurs pour le move_id
        self._std = None  # mean de tous les moves pour tous les joueurs pour le move_id
        self.moves_mean = Moves([])
        self.moves_std = Moves([])
        self.add_moves_describe(self.lst_moves)
        # mean de tous les joueurs pour le move_id
        # std de tous les joueurs pour le move_id

        self._mean_drop_end_time = None
        self._mean_drop_end_time = self.mean_drop_end
        self._std_drop_end_time = None
        self._std_drop_end_time = self.std_drop_end

    def __len__(self):
        return self.num_move_per_player

    def __iter__(self):
        self.i = 0
        return self

    def __next__(self):
        if self.i < len(self):
            output = self._moves[self.i]
            self.i += 1
            return output
        else:
            raise StopIteration

    def __getitem__(self, info):
        move_id, describe_type = info[0], info[1]  # must be a tuple or list
        if describe_type == "mean":
            if move_id is not None:
                data = self.moves_mean[move_id]
            else:
                data = self.mean
        elif describe_type == 'std':
            if move_id is not None:
                data = self.moves_std[move_id]
            else:
                data = self.std
        return deepcopy(data)

    @property
    def mean(self):
        if self._mean is None:
            _data = self.create_empty_data_struct()
            self._mean = self.calculate_mean(data_struct=_data)
        return self._mean

    @property
    def std(self):
        if self._std is None:
            _data = self.create_empty_data_struct()
            self._std = self.calculate_std(self.mean, data_struct=_data)
        return self._std

    @property
    def mean_drop_end(self):
        if self._mean_drop_end_time is None:
            mean_time = 0
            for m in self.moves_mean:
                mean_time += m.drop_end
            mean_time /= len(self.moves_mean)
            self._mean_drop_end_time = mean_time
        return self._mean_drop_end_time

    @property
    def std_drop_end(self):
        if self._std_drop_end_time is None:
            std_time = 0
            for m in self.moves_std:
                std_time = 0
            std_time /= len(self.moves_std)
            # this the mean of all the std. It is still std
            self._std_drop_end_time = std_time
        return self._std_drop_end_time

    # def get_lst_move(self):
    #     """extract the move id based on the describe_att_name"""
    #     moves_id_lst = []
    #     for m in self._players[0].__dict__[self.describe_att_name]:
    #         #regarder tous les moves de describe_att_name
    #         moves_id_lst.append(m.move_id)
    #     return moves_id_lst

    def create_empty_data_struct(self):
        COF = Joint(None, None, "COF")
        COM = Joint(None, None, "COF")
        C7 = Joint(None, None, "COF")
        angle_lower = Angle(None, None, "angle_lower")
        angle_trunk = Angle(None, None, "angle_trunk")
        phase = OLD_PHASE_OUT_PHASE(None, None, None, name="phase")
        return Move(cof=COF,
                    com=COM,
                    c7=C7,
                    angle_l=angle_lower,
                    angle_t=angle_trunk,
                    phase=phase)

    def append(self, move_id):
        # print("move_id to get mean", move_id)
        _data = self.create_empty_data_struct()
        _mean = self.calculate_mean(data_struct=_data, move_id=move_id)
        _std = self.calculate_std(_mean, data_struct=_data, move_id=move_id)
        _mean.drop_end = self.calculate_mean_drop_end(move_id=move_id)
        self.moves_mean.append(_mean)
        self.moves_std.append(_std)

    def add_moves_describe(self, lst_moves):
        for i in lst_moves:
            self.append(i)

    def calculate_mean_drop_end(self, move_id=None):
        mean_time_drop_end = 0
        if move_id is not None:
            for p in self._players:
                mean_time_drop_end += p.__dict__[
                    self.describe_att_name][move_id].drop_end_index
            mean_time_drop_end /= len(self._players)
        else:
            raise IndexError
        return mean_time_drop_end

    def calculate_std_drop_end(self, mean_drop_time, move_id=None):
        std_time_drop_end = 0
        if move_id is not None:
            for p in self._players:
                std_time_drop_end += p.__dict__[
                    self.describe_att_name][move_id].drop_end_index
            std_time_drop_end -= mean_drop_time**2
            std_time_drop_end /= len(self._players)
            std_time_drop_end = np.sqrt(std_time_drop_end)
        else:
            raise IndexError
        return std_time_drop_end

    def calculate_mean(self, data_struct=None, move_id=None):
        # TODO adapt for players, right now it's a copy of MeanMove.calculate_mean
        for att in self.dtype_att:
            for s in data_struct.__dict__[att].slots:
                # s in slots is either x_arr, y_arr or abs_angle, rel_angle or phase
                # print("attribute of mean_move : ", att, "attribute of maindata in move : ", s)
                # adding all the s, of dtype of att of player and dividing by num of players to get the mean
                # player.describe_att_name.dtypename.slot
                if move_id is not None:
                    # this section manages data strucutre with move_id like player.all_move
                    mean = deepcopy(
                        self._players[0].__dict__[self.describe_att_name]
                        [move_id].__dict__[att].__dict__[s])
                    data_struct.__dict__[att].__dict__[s] = mean
                    for i in range(1, len(self._players)):
                        mean = self._players[i].__dict__[
                            self.describe_att_name][move_id].__dict__[
                                att].__dict__[s]
                        data_struct.__dict__[att].__dict__[s] += mean
                    data_struct.__dict__[att].__dict__[s] /= len(self._players)

                else:
                    # this section manages data strucutre with move_id like player.mean_all
                    mean = self._players[0].__dict__[
                        self.describe_att_name +
                        "_mean"].__dict__[att].__dict__[s]
                    data_struct.__dict__[att].__dict__[s] = mean
                    for i in range(1, len(self._players)):
                        mean = self._players[i].__dict__[
                            self.describe_att_name +
                            "_mean"].__dict__[att].__dict__[s]
                        data_struct.__dict__[att].__dict__[s] += mean
                    data_struct.__dict__[att].__dict__[s] /= len(self._players)
        return data_struct

    def calculate_std(self, _mean, data_struct=None, move_id=None):
        for att in self.dtype_att:
            for s in data_struct.__dict__[att].slots:
                if move_id is not None:
                    std = 0
                    for i in range(0, len(self._players)):
                        std += self._players[i].__dict__[
                            self.describe_att_name][move_id].__dict__[
                                att].__dict__[s]**2
                    std -= _mean.__dict__[att].__dict__[s]**2
                    std /= len(self._players)
                    data_struct.__dict__[att].__dict__[s] = np.sqrt(std)
                else:
                    std = 0
                    for i in range(0, len(self._players)):
                        std += self._players[i].__dict__[
                            self.describe_att_name +
                            "_std"].__dict__[att].__dict__[s]**2
                    std -= _mean.__dict__[att].__dict__[s]**2
                    std /= len(self._players)
                    data_struct.__dict__[att].__dict__[s] = np.sqrt(std)
        return data_struct