示例#1
0
    def test_scaler(self):
        scaler_stats_path = os.path.join(get_tests_input_path(), 'scale_stats.npy')
        conf.audio['stats_path'] = scaler_stats_path
        conf.audio['preemphasis'] = 0.0
        conf.audio['do_trim_silence'] = True
        conf.audio['signal_norm'] = True

        ap = AudioProcessor(**conf.audio)
        mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path)
        ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)

        self.ap.signal_norm = False
        self.ap.preemphasis = 0.0

        # test scaler forward and backward transforms
        wav = self.ap.load_wav(WAV_FILE)
        mel_reference = self.ap.melspectrogram(wav)
        mel_norm = ap.melspectrogram(wav)
        mel_denorm = ap._denormalize(mel_norm)
        assert abs(mel_reference - mel_denorm).max() < 1e-4
示例#2
0
def main():
    """Run preprocessing process."""
    parser = argparse.ArgumentParser(
        description="Compute mean and variance of spectrogtram features.")
    parser.add_argument(
        "--config_path",
        type=str,
        required=True,
        help="TTS config file path to define audio processin parameters.")
    parser.add_argument("--out_path",
                        default=None,
                        type=str,
                        help="directory to save the output file.")
    args = parser.parse_args()

    # load config
    CONFIG = load_config(args.config_path)
    CONFIG.audio['signal_norm'] = False  # do not apply earlier normalization
    CONFIG.audio['stats_path'] = None  # discard pre-defined stats

    # load audio processor
    ap = AudioProcessor(**CONFIG.audio)

    # load the meta data of target dataset
    dataset_items = load_meta_data(CONFIG.datasets)[0]  # take only train data
    print(f" > There are {len(dataset_items)} files.")

    mel_sum = 0
    mel_square_sum = 0
    linear_sum = 0
    linear_square_sum = 0
    N = 0
    for item in tqdm(dataset_items):
        # compute features
        wav = ap.load_wav(item[1])
        linear = ap.spectrogram(wav)
        mel = ap.melspectrogram(wav)

        # compute stats
        N += mel.shape[1]
        mel_sum += mel.sum(1)
        linear_sum += linear.sum(1)
        mel_square_sum += (mel**2).sum(axis=1)
        linear_square_sum += (linear**2).sum(axis=1)

    mel_mean = mel_sum / N
    mel_scale = np.sqrt(mel_square_sum / N - mel_mean**2)
    linear_mean = linear_sum / N
    linear_scale = np.sqrt(linear_square_sum / N - linear_mean**2)

    output_file_path = os.path.join(args.out_path, "scale_stats.npy")
    stats = {}
    stats['mel_mean'] = mel_mean
    stats['mel_std'] = mel_scale
    stats['linear_mean'] = linear_mean
    stats['linear_std'] = linear_scale

    print(f' > Avg mel spec mean: {mel_mean.mean()}')
    print(f' > Avg mel spec scale: {mel_scale.mean()}')
    print(f' > Avg linear spec mean: {linear_mean.mean()}')
    print(f' > Avg lienar spec scale: {linear_scale.mean()}')

    # set default config values for mean-var scaling
    CONFIG.audio['stats_path'] = output_file_path
    CONFIG.audio['signal_norm'] = True
    # remove redundant values
    del CONFIG.audio['max_norm']
    del CONFIG.audio['min_level_db']
    del CONFIG.audio['symmetric_norm']
    del CONFIG.audio['clip_norm']
    stats['audio_config'] = CONFIG.audio
    np.save(output_file_path, stats, allow_pickle=True)
    print(f' > scale_stats.npy is saved to {output_file_path}')
示例#3
0
class TestTTSDataset(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super(TestTTSDataset, self).__init__(*args, **kwargs)
        self.max_loader_iter = 4
        self.ap = AudioProcessor(**c.audio)

    def _create_dataloader(self, batch_size, r, bgs):
        items = ljspeech(c.data_path, 'metadata.csv')
        dataset = TTSDataset.MyDataset(
            r,
            c.text_cleaner,
            compute_linear_spec=True,
            ap=self.ap,
            meta_data=items,
            tp=c.characters if 'characters' in c.keys() else None,
            batch_group_size=bgs,
            min_seq_len=c.min_seq_len,
            max_seq_len=float("inf"),
            use_phonemes=False)
        dataloader = DataLoader(dataset,
                                batch_size=batch_size,
                                shuffle=False,
                                collate_fn=dataset.collate_fn,
                                drop_last=True,
                                num_workers=c.num_loader_workers)
        return dataloader, dataset

    def test_loader(self):
        if ok_ljspeech:
            dataloader, dataset = self._create_dataloader(2, c.r, 0)

            for i, data in enumerate(dataloader):
                if i == self.max_loader_iter:
                    break
                text_input = data[0]
                text_lengths = data[1]
                speaker_name = data[2]
                linear_input = data[3]
                mel_input = data[4]
                mel_lengths = data[5]
                stop_target = data[6]
                item_idx = data[7]

                neg_values = text_input[text_input < 0]
                check_count = len(neg_values)
                assert check_count == 0, \
                    " !! Negative values in text_input: {}".format(check_count)
                # TODO: more assertion here
                assert isinstance(speaker_name[0], str)
                assert linear_input.shape[0] == c.batch_size
                assert linear_input.shape[2] == self.ap.fft_size // 2 + 1
                assert mel_input.shape[0] == c.batch_size
                assert mel_input.shape[2] == c.audio['num_mels']
                # check normalization ranges
                if self.ap.symmetric_norm:
                    assert mel_input.max() <= self.ap.max_norm
                    assert mel_input.min() >= -self.ap.max_norm  #pylint: disable=invalid-unary-operand-type
                    assert mel_input.min() < 0
                else:
                    assert mel_input.max() <= self.ap.max_norm
                    assert mel_input.min() >= 0

    def test_batch_group_shuffle(self):
        if ok_ljspeech:
            dataloader, dataset = self._create_dataloader(2, c.r, 16)
            last_length = 0
            frames = dataset.items
            for i, data in enumerate(dataloader):
                if i == self.max_loader_iter:
                    break
                text_input = data[0]
                text_lengths = data[1]
                speaker_name = data[2]
                linear_input = data[3]
                mel_input = data[4]
                mel_lengths = data[5]
                stop_target = data[6]
                item_idx = data[7]

                avg_length = mel_lengths.numpy().mean()
                assert avg_length >= last_length
            dataloader.dataset.sort_items()
            is_items_reordered = False
            for idx, item in enumerate(dataloader.dataset.items):
                if item != frames[idx]:
                    is_items_reordered = True
                    break
            assert is_items_reordered

    def test_padding_and_spec(self):
        if ok_ljspeech:
            dataloader, dataset = self._create_dataloader(1, 1, 0)

            for i, data in enumerate(dataloader):
                if i == self.max_loader_iter:
                    break
                text_input = data[0]
                text_lengths = data[1]
                speaker_name = data[2]
                linear_input = data[3]
                mel_input = data[4]
                mel_lengths = data[5]
                stop_target = data[6]
                item_idx = data[7]

                # check mel_spec consistency
                wav = np.asarray(self.ap.load_wav(item_idx[0]),
                                 dtype=np.float32)
                mel = self.ap.melspectrogram(wav).astype('float32')
                mel = torch.FloatTensor(mel).contiguous()
                mel_dl = mel_input[0]
                # NOTE: Below needs to check == 0 but due to an unknown reason
                # there is a slight difference between two matrices.
                # TODO: Check this assert cond more in detail.
                assert abs(mel.T - mel_dl).max() < 1e-5, abs(mel.T -
                                                             mel_dl).max()

                # check mel-spec correctness
                mel_spec = mel_input[0].cpu().numpy()
                wav = self.ap.inv_melspectrogram(mel_spec.T)
                self.ap.save_wav(wav, OUTPATH + '/mel_inv_dataloader.wav')
                shutil.copy(item_idx[0],
                            OUTPATH + '/mel_target_dataloader.wav')

                # check linear-spec
                linear_spec = linear_input[0].cpu().numpy()
                wav = self.ap.inv_spectrogram(linear_spec.T)
                self.ap.save_wav(wav, OUTPATH + '/linear_inv_dataloader.wav')
                shutil.copy(item_idx[0],
                            OUTPATH + '/linear_target_dataloader.wav')

                # check the last time step to be zero padded
                assert linear_input[0, -1].sum() != 0
                assert linear_input[0, -2].sum() != 0
                assert mel_input[0, -1].sum() != 0
                assert mel_input[0, -2].sum() != 0
                assert stop_target[0, -1] == 1
                assert stop_target[0, -2] == 0
                assert stop_target.sum() == 1
                assert len(mel_lengths.shape) == 1
                assert mel_lengths[0] == linear_input[0].shape[0]
                assert mel_lengths[0] == mel_input[0].shape[0]

            # Test for batch size 2
            dataloader, dataset = self._create_dataloader(2, 1, 0)

            for i, data in enumerate(dataloader):
                if i == self.max_loader_iter:
                    break
                text_input = data[0]
                text_lengths = data[1]
                speaker_name = data[2]
                linear_input = data[3]
                mel_input = data[4]
                mel_lengths = data[5]
                stop_target = data[6]
                item_idx = data[7]

                if mel_lengths[0] > mel_lengths[1]:
                    idx = 0
                else:
                    idx = 1

                # check the first item in the batch
                assert linear_input[idx, -1].sum() != 0
                assert linear_input[idx, -2].sum() != 0, linear_input
                assert mel_input[idx, -1].sum() != 0
                assert mel_input[idx, -2].sum() != 0, mel_input
                assert stop_target[idx, -1] == 1
                assert stop_target[idx, -2] == 0
                assert stop_target[idx].sum() == 1
                assert len(mel_lengths.shape) == 1
                assert mel_lengths[idx] == mel_input[idx].shape[0]
                assert mel_lengths[idx] == linear_input[idx].shape[0]

                # check the second itme in the batch
                assert linear_input[1 - idx, -1].sum() == 0
                assert mel_input[1 - idx, -1].sum() == 0
                assert stop_target[1, mel_lengths[1] - 1] == 1
                assert stop_target[1, mel_lengths[1]:].sum() == 0
                assert len(mel_lengths.shape) == 1
示例#4
0
class Mel2MelDataset(Dataset):
    def __init__(self, path, INPUT_SR, TARGET_SR, WINDOW_LENGTH):
        self.INPUT_SR = INPUT_SR
        self.TARGET_SR = TARGET_SR
        self.WINDOW_LENGTH = WINDOW_LENGTH
        self.CONFIG = load_config('config_fr.json')
        self.CONFIG['audio']['sample_rate'] = self.INPUT_SR
        self.AP_INPUT = AudioProcessor(**self.CONFIG['audio'])
        self.CONFIG['audio']['sample_rate'] = self.TARGET_SR
        self.AP_TARGET = AudioProcessor(**self.CONFIG['audio'])
        self.files = glob.glob(path + '/**/*.wav', recursive=True)
        #If you change your dataset, delete cache.json
        if os.path.isfile('./cache.json'):
            with open('./cache.json', "r") as json_file:
                self.pre_repertoir = json.load(json_file)
        else:
            print("> Computing wave files length...")
            self.pre_repertoir = [
                librosa.get_duration(filename=file)
                for file in tqdm(self.files)
            ]
            with open('./cache.json', mode="w") as json_file:
                json.dump(self.pre_repertoir, json_file)
        self.repertoir = [
            int(item / WINDOW_LENGTH) for item in self.pre_repertoir
        ]
        self.length = self.get_len()

    def __len__(self):
        return self.length

    def __getitem__(self, id):
        ref = self.get_reference(id)
        input_wav, _ = librosa.load(self.files[ref[0]],
                                    offset=self.WINDOW_LENGTH * ref[1],
                                    duration=self.WINDOW_LENGTH)
        target_wav = librosa.resample(input_wav, self.INPUT_SR, self.TARGET_SR)
        input = torch.tensor(self.AP_INPUT.melspectrogram(input_wav))
        target = torch.tensor(self.AP_TARGET.melspectrogram(target_wav))
        scale_factor = (target.shape[0] / input.shape[0],
                        target.shape[1] / input.shape[1])
        input = torch.nn.functional.interpolate(
            input.unsqueeze(0).unsqueeze(0),
            scale_factor=scale_factor,
            mode='bilinear').reshape(target.shape)
        return {
            'image':
            self.normalize(input).unsqueeze(0).type(torch.FloatTensor),
            'mask': self.normalize(target).unsqueeze(0).type(torch.FloatTensor)
        }

    def get_reference(self, id):
        i = 0
        sum = 0
        while True:
            if (sum > id):
                return (i - 1, id - sum + self.repertoir[i - 1])
            else:
                sum += self.repertoir[i]
                i += 1

    def get_len(self):
        sum = 0
        for num in self.repertoir:
            sum += num
        return sum

    def normalize(self, tensor):
        return tensor / 8 + 0.5

    def denormalize(self, tensor):
        return tensor - 0.5 * 8
def gan_dataset_case(batch_size, seq_len, hop_len, conv_pad, return_segments,
                     use_noise_augment, use_cache, num_workers):
    ''' run dataloader with given parameters and check conditions '''
    ap = AudioProcessor(**C.audio)
    _, train_items = load_wav_data(test_data_path, 10)
    dataset = GANDataset(ap,
                         train_items,
                         seq_len=seq_len,
                         hop_len=hop_len,
                         pad_short=2000,
                         conv_pad=conv_pad,
                         return_segments=return_segments,
                         use_noise_augment=use_noise_augment,
                         use_cache=use_cache)
    loader = DataLoader(dataset=dataset,
                        batch_size=batch_size,
                        shuffle=True,
                        num_workers=num_workers,
                        pin_memory=True,
                        drop_last=True)

    max_iter = 10
    count_iter = 0

    # return random segments or return the whole audio
    if return_segments:
        for item1, _ in loader:
            feat1, wav1 = item1
            # feat2, wav2 = item2
            expected_feat_shape = (batch_size, ap.num_mels,
                                   seq_len // hop_len + conv_pad * 2)

            # check shapes
            assert np.all(feat1.shape == expected_feat_shape
                          ), f" [!] {feat1.shape} vs {expected_feat_shape}"
            assert (feat1.shape[2] - conv_pad * 2) * hop_len == wav1.shape[2]

            # check feature vs audio match
            if not use_noise_augment:
                for idx in range(batch_size):
                    audio = wav1[idx].squeeze()
                    feat = feat1[idx]
                    mel = ap.melspectrogram(audio)
                    # the first 2 and the last 2 frames are skipped due to the padding
                    # differences in stft
                    assert (feat - mel[:, :feat1.shape[-1]])[:, 2:-2].sum(
                    ) <= 0, f' [!] {(feat - mel[:, :feat1.shape[-1]])[:, 2:-2].sum()}'

            count_iter += 1
            # if count_iter == max_iter:
            #     break
    else:
        for item in loader:
            feat, wav = item
            expected_feat_shape = (batch_size, ap.num_mels,
                                   (wav.shape[-1] // hop_len) + (conv_pad * 2))
            assert np.all(feat.shape == expected_feat_shape
                          ), f" [!] {feat.shape} vs {expected_feat_shape}"
            assert (feat.shape[2] - conv_pad * 2) * hop_len == wav.shape[2]
            count_iter += 1
            if count_iter == max_iter:
                break
示例#6
0
class TestAudio(unittest.TestCase):
    def __init__(self, *args, **kwargs):
        super(TestAudio, self).__init__(*args, **kwargs)
        self.ap = AudioProcessor(**conf.audio)

    def test_audio_synthesis(self):
        """ 1. load wav
            2. set normalization parameters
            3. extract mel-spec
            4. invert to wav and save the output
        """
        print(" > Sanity check for the process wav -> mel -> wav")

        def _test(max_norm, signal_norm, symmetric_norm, clip_norm):
            self.ap.max_norm = max_norm
            self.ap.signal_norm = signal_norm
            self.ap.symmetric_norm = symmetric_norm
            self.ap.clip_norm = clip_norm
            wav = self.ap.load_wav(WAV_FILE)
            mel = self.ap.melspectrogram(wav)
            wav_ = self.ap.inv_melspectrogram(mel)
            file_name = "/audio_test-melspec_max_norm_{}-signal_norm_{}-symmetric_{}-clip_norm_{}.wav"\
                .format(max_norm, signal_norm, symmetric_norm, clip_norm)
            print(" | > Creating wav file at : ", file_name)
            self.ap.save_wav(wav_, OUT_PATH + file_name)

        # maxnorm = 1.0
        _test(1., False, False, False)
        _test(1., True, False, False)
        _test(1., True, True, False)
        _test(1., True, False, True)
        _test(1., True, True, True)
        # maxnorm = 4.0
        _test(4., False, False, False)
        _test(4., True, False, False)
        _test(4., True, True, False)
        _test(4., True, False, True)
        _test(4., True, True, True)

    def test_normalize(self):
        """Check normalization and denormalization for range values and consistency """
        print(" > Testing normalization and denormalization.")
        wav = self.ap.load_wav(WAV_FILE)
        wav = self.ap.sound_norm(wav)  # normalize audio to get abetter normalization range below.
        self.ap.signal_norm = False
        x = self.ap.melspectrogram(wav)
        x_old = x

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.clip_norm = False
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")
        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
        assert x_norm.min() >= 0 - 1, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.clip_norm = True
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.clip_norm = False
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm + 1, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm - 2, x_norm.min()  #pylint: disable=invalid-unary-operand-type
        assert x_norm.min() <= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.clip_norm = True
        self.ap.max_norm = 4.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        # check value range
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm, x_norm.min()  #pylint: disable=invalid-unary-operand-type
        assert x_norm.min() <= 0, x_norm.min()
        # check denorm.
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3, (x - x_).mean()

        self.ap.signal_norm = True
        self.ap.symmetric_norm = False
        self.ap.max_norm = 1.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= 0, x_norm.min()
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3

        self.ap.signal_norm = True
        self.ap.symmetric_norm = True
        self.ap.max_norm = 1.0
        x_norm = self.ap._normalize(x)
        print(f" > MaxNorm: {self.ap.max_norm}, ClipNorm:{self.ap.clip_norm}, SymmetricNorm:{self.ap.symmetric_norm}, SignalNorm:{self.ap.signal_norm} Range-> {x_norm.max()} --  {x_norm.min()}")


        assert (x_old - x).sum() == 0
        assert x_norm.max() <= self.ap.max_norm, x_norm.max()
        assert x_norm.min() >= -self.ap.max_norm, x_norm.min()  #pylint: disable=invalid-unary-operand-type
        assert x_norm.min() < 0, x_norm.min()
        x_ = self.ap._denormalize(x_norm)
        assert (x - x_).sum() < 1e-3

    def test_scaler(self):
        scaler_stats_path = os.path.join(get_tests_input_path(), 'scale_stats.npy')
        conf.audio['stats_path'] = scaler_stats_path
        conf.audio['preemphasis'] = 0.0
        conf.audio['do_trim_silence'] = True
        conf.audio['signal_norm'] = True

        ap = AudioProcessor(**conf.audio)
        mel_mean, mel_std, linear_mean, linear_std, _ = ap.load_stats(scaler_stats_path)
        ap.setup_scaler(mel_mean, mel_std, linear_mean, linear_std)

        self.ap.signal_norm = False
        self.ap.preemphasis = 0.0

        # test scaler forward and backward transforms
        wav = self.ap.load_wav(WAV_FILE)
        mel_reference = self.ap.melspectrogram(wav)
        mel_norm = ap.melspectrogram(wav)
        mel_denorm = ap._denormalize(mel_norm)
        assert abs(mel_reference - mel_denorm).max() < 1e-4