print "Printing digit example #" + str(example_number + 1) + " with label: " \ + str(ALL_TRAINING_LABELS[example_number]) _print_digit_image(ALL_TRAINING_IMAGES[example_number]) print for i in range(10, 11): # Calling the basic feature extractor features = mp.extract_basic_features( ALL_TRAINING_IMAGES[example_number], DATA_WIDTH, DATA_HEIGHT) # Compute parameters for a Naive Bayes classifier using the basic feature # extractor mp.compute_statistics(ALL_TRAINING_IMAGES, ALL_TRAINING_LABELS, DATA_WIDTH, DATA_HEIGHT, mp.extract_advanced_features, percentage=10.0 * i, k=.0001) # Making predictions on validation data predicted_labels = mp.classify(ALL_VALIDATION_IMAGES, DATA_WIDTH, DATA_HEIGHT, mp.extract_advanced_features) incorrect = [] correct_count = 0.0 for ei in range(len(predicted_labels)): if (ALL_VALIDATION_LABELS[ei] == predicted_labels[ei]): correct_count += 1 else:
# Calling the basic feature extractor features = mp.extract_basic_features(ALL_TRAINING_IMAGES[example_number], DATA_WIDTH, DATA_HEIGHT) #mp.extract_advanced_features(ALL_TRAINING_IMAGES[example_number],DATA_WIDTH, DATA_HEIGHT) #mp.extract_advanced_features(ALL_TRAINING_IMAGES[2075],DATA_WIDTH, DATA_HEIGHT) # Compute parameters for a Naive Bayes classifier using the basic feature # extractor #mp.compute_statistics(ALL_TRAINING_IMAGES, ALL_TRAINING_LABELS, DATA_WIDTH,DATA_HEIGHT, mp.extract_basic_features) # Making predictions on validation data #predicted_labels = mp.classify(ALL_VALIDATION_IMAGES, DATA_WIDTH, DATA_HEIGHT,mp.extract_basic_features) #with advance features #mp.compute_statistics(ALL_TRAINING_IMAGES, ALL_TRAINING_LABELS, DATA_WIDTH, DATA_HEIGHT, mp.extract_advanced_features) #predicted_labels = mp.classify(ALL_VALIDATION_IMAGES, DATA_WIDTH, DATA_HEIGHT, mp.extract_advanced_features) #with final features mp.compute_statistics(ALL_TRAINING_IMAGES, ALL_TRAINING_LABELS, DATA_WIDTH, DATA_HEIGHT, mp.extract_final_features) predicted_labels = mp.classify(ALL_VALIDATION_IMAGES, DATA_WIDTH, DATA_HEIGHT, mp.extract_final_features) correct_count = 0.0 for ei in range(len(predicted_labels)): if (ALL_VALIDATION_LABELS[ei] == predicted_labels[ei]): correct_count += 1 print "Correct prediction: " + str(correct_count / len(predicted_labels)) print("--- %s seconds ---" % (time.time() - start_time))
# Load all data _load_all_data() # Pring a random traning example example_number = random.randint(0, NUMBER_OF_TRAINING_EXAMPLES) print "Printing digit example #" + str(example_number + 1) + " with label: " \ + str(ALL_TRAINING_LABELS[example_number]) _print_digit_image(ALL_TRAINING_IMAGES[example_number]) print # Calling the basic feature extractor features = mp.extract_basic_features(ALL_TRAINING_IMAGES[example_number], DATA_WIDTH, DATA_HEIGHT) # Compute parameters for a Naive Bayes classifier using the basic feature # extractor mp.compute_statistics(ALL_TRAINING_IMAGES, ALL_TRAINING_LABELS, DATA_WIDTH, DATA_HEIGHT, mp.extract_basic_features, 100) # Making predictions on validation data predicted_labels = mp.classify(ALL_VALIDATION_IMAGES, DATA_WIDTH, DATA_HEIGHT, mp.extract_basic_features) correct_count = 0.0 for ei in range(len(predicted_labels)): if (ALL_VALIDATION_LABELS[ei] == predicted_labels[ei]): correct_count += 1 print "Correct prediction: " + str(correct_count / len(predicted_labels))