def run_task(self):  # {{{
        """
        Plots time-series output of properties in an ocean region.
        """
        # Authors
        # -------
        # Xylar Asay-Davis

        self.logger.info("\nPlotting time series of ocean properties of {}"
                         "...".format(self.regionName))

        self.logger.info('  Load time series...')

        config = self.config
        calendar = self.calendar

        regionMaskSuffix = config.getExpression(self.sectionName,
                                                'regionMaskSuffix')

        regionMaskFile = get_region_mask(config,
                                         '{}.geojson'.format(regionMaskSuffix))

        fcAll = read_feature_collection(regionMaskFile)

        fc = FeatureCollection()
        for feature in fcAll.features:
            if feature['properties']['name'] == self.regionName:
                fc.add_feature(feature)
                break

        baseDirectory = build_config_full_path(config, 'output',
                                               'timeSeriesSubdirectory')

        startYear = config.getint('timeSeries', 'startYear')
        endYear = config.getint('timeSeries', 'endYear')
        regionGroup = self.regionGroup
        timeSeriesName = regionGroup[0].lower() + \
            regionGroup[1:].replace(' ', '')

        inFileName = '{}/{}/{}_{:04d}-{:04d}.nc'.format(
            baseDirectory, timeSeriesName, timeSeriesName, startYear, endYear)

        dsIn = xarray.open_dataset(inFileName).isel(nRegions=self.regionIndex)

        zbounds = dsIn.zbounds.values

        controlConfig = self.controlConfig
        plotControl = controlConfig is not None
        if plotControl:
            controlRunName = controlConfig.get('runs', 'mainRunName')
            baseDirectory = build_config_full_path(controlConfig, 'output',
                                                   'timeSeriesSubdirectory')

            startYear = controlConfig.getint('timeSeries', 'startYear')
            endYear = controlConfig.getint('timeSeries', 'endYear')

            inFileName = '{}/{}/{}_{:04d}-{:04d}.nc'.format(
                baseDirectory, timeSeriesName, timeSeriesName, startYear,
                endYear)
            dsRef = xarray.open_dataset(inFileName).isel(
                nRegions=self.regionIndex)

            zboundsRef = dsRef.zbounds.values

        mainRunName = config.get('runs', 'mainRunName')
        movingAverageMonths = 1

        self.logger.info('  Make plots...')

        groupLink = self.regionGroup[0].lower() + \
            self.regionGroup[1:].replace(' ', '')

        for var in self.variables:
            varName = var['name']
            mainArray = dsIn[varName]
            is3d = mainArray.attrs['is3d'] == 'True'
            if is3d:
                title = 'Volume-Mean {} in {}'.format(var['title'],
                                                      self.regionName)
            else:
                title = 'Area-Mean {} in {}'.format(var['title'],
                                                    self.regionName)

            if plotControl:
                refArray = dsRef[varName]
            xLabel = 'Time (yr)'
            yLabel = '{} ({})'.format(var['title'], var['units'])

            filePrefix = '{}_{}'.format(self.prefix, varName)
            outFileName = '{}/{}.png'.format(self.plotsDirectory, filePrefix)

            fields = [mainArray]
            lineColors = ['k']
            lineWidths = [2.5]
            legendText = [mainRunName]
            if plotControl:
                fields.append(refArray)
                lineColors.append('r')
                lineWidths.append(1.2)
                legendText.append(controlRunName)

            if is3d:
                if not plotControl or numpy.all(zbounds == zboundsRef):
                    title = '{} ({} < z < {} m)'.format(
                        title, zbounds[0], zbounds[1])
                else:
                    legendText[0] = '{} ({} < z < {} m)'.format(
                        legendText[0], zbounds[0], zbounds[1])
                    legendText[1] = '{} ({} < z < {} m)'.format(
                        legendText[1], zboundsRef[0], zboundsRef[1])

            fig = timeseries_analysis_plot(
                config,
                fields,
                calendar=calendar,
                title=title,
                xlabel=xLabel,
                ylabel=yLabel,
                movingAveragePoints=movingAverageMonths,
                lineColors=lineColors,
                lineWidths=lineWidths,
                legendText=legendText)

            # do this before the inset because otherwise it moves the inset
            # and cartopy doesn't play too well with tight_layout anyway
            plt.tight_layout()

            add_inset(fig, fc, width=2.0, height=2.0)

            savefig(outFileName, tight=False)

            caption = 'Regional mean of {}'.format(title)
            write_image_xml(config=config,
                            filePrefix=filePrefix,
                            componentName='Ocean',
                            componentSubdirectory='ocean',
                            galleryGroup='{} Time Series'.format(
                                self.regionGroup),
                            groupLink=groupLink,
                            gallery=var['title'],
                            thumbnailDescription=self.regionName,
                            imageDescription=caption,
                            imageCaption=caption)
示例#2
0
    def run_task(self):  # {{{
        """
        Plots time-series output of Antarctic sub-ice-shelf melt rates.
        """
        # Authors
        # -------
        # Xylar Asay-Davis, Stephen Price

        self.logger.info("\nPlotting Antarctic melt rate time series for "
                         "{}...".format(self.iceShelf))

        self.logger.info('  Load melt rate data...')

        config = self.config
        calendar = self.calendar

        iceShelfMasksFile = self.iceShelfMasksFile

        fcAll = read_feature_collection(iceShelfMasksFile)

        fc = FeatureCollection()
        for feature in fcAll.features:
            if feature['properties']['name'] == self.iceShelf:
                fc.add_feature(feature)
                break

        totalMeltFlux, meltRates = self._load_ice_shelf_fluxes(config)

        plotControl = self.controlConfig is not None
        if plotControl:
            controlRunName = self.controlConfig.get('runs', 'mainRunName')

            refTotalMeltFlux, refMeltRates = \
                self._load_ice_shelf_fluxes(self.controlConfig)

        # Load observations from multiple files and put in dictionary based
        # on shelf keyname
        observationsDirectory = build_obs_path(config, 'ocean',
                                               'meltSubdirectory')
        obsFileNameDict = {'Rignot et al. (2013)':
                           'Rignot_2013_melt_rates_20200623.csv',
                           'Rignot et al. (2013) SS':
                           'Rignot_2013_melt_rates_SS_20200623.csv'}

        obsDict = {}  # dict for storing dict of obs data
        for obsName in obsFileNameDict:
            obsFileName = '{}/{}'.format(observationsDirectory,
                                         obsFileNameDict[obsName])
            obsDict[obsName] = {}
            obsFile = csv.reader(open(obsFileName, 'rU'))
            next(obsFile, None)  # skip the header line
            for line in obsFile:  # some later useful values commented out
                shelfName = line[0]
                if shelfName != self.iceShelf:
                    continue

                # surveyArea = line[1]
                meltFlux = float(line[2])
                meltFluxUncertainty = float(line[3])
                meltRate = float(line[4])
                meltRateUncertainty = float(line[5])
                # actualArea = float( line[6] )  # actual area here is in sq km

                # build dict of obs. keyed to filename description
                # (which will be used for plotting)
                obsDict[obsName] = {
                    'meltFlux': meltFlux,
                    'meltFluxUncertainty': meltFluxUncertainty,
                    'meltRate': meltRate,
                    'meltRateUncertainty': meltRateUncertainty}
                break

        # If areas from obs file used need to be converted from sq km to sq m

        mainRunName = config.get('runs', 'mainRunName')
        movingAverageMonths = config.getint('timeSeriesAntarcticMelt',
                                            'movingAverageMonths')

        outputDirectory = build_config_full_path(config, 'output',
                                                 'timeseriesSubdirectory')

        make_directories(outputDirectory)

        self.logger.info('  Make plots...')

        # get obs melt flux and unc. for shelf (similar for rates)
        obsMeltFlux = []
        obsMeltFluxUnc = []
        obsMeltRate = []
        obsMeltRateUnc = []
        for obsName in obsDict:
            if len(obsDict[obsName]) > 0:
                obsMeltFlux.append(
                    obsDict[obsName]['meltFlux'])
                obsMeltFluxUnc.append(
                    obsDict[obsName]['meltFluxUncertainty'])
                obsMeltRate.append(
                    obsDict[obsName]['meltRate'])
                obsMeltRateUnc.append(
                    obsDict[obsName]['meltRateUncertainty'])
            else:
                # append NaN so this particular obs won't plot
                self.logger.warning('{} observations not available for '
                                    '{}'.format(obsName, self.iceShelf))
                obsMeltFlux.append(None)
                obsMeltFluxUnc.append(None)
                obsMeltRate.append(None)
                obsMeltRateUnc.append(None)

        title = self.iceShelf.replace('_', ' ')

        xLabel = 'Time (yr)'
        yLabel = 'Melt Flux (GT/yr)'

        timeSeries = totalMeltFlux.isel(nRegions=self.regionIndex)

        filePrefix = 'melt_flux_{}'.format(self.iceShelf.replace(' ', '_'))
        outFileName = '{}/{}.png'.format(self.plotsDirectory, filePrefix)

        fields = [timeSeries]
        lineColors = ['k']
        lineWidths = [2.5]
        legendText = [mainRunName]
        if plotControl:
            fields.append(refTotalMeltFlux.isel(nRegions=self.regionIndex))
            lineColors.append('r')
            lineWidths.append(1.2)
            legendText.append(controlRunName)

        fig = timeseries_analysis_plot(config, fields, calendar=calendar,
                                       title=title, xlabel=xLabel,
                                       ylabel=yLabel,
                                       movingAveragePoints=movingAverageMonths,
                                       lineColors=lineColors,
                                       lineWidths=lineWidths,
                                       legendText=legendText,
                                       obsMean=obsMeltFlux,
                                       obsUncertainty=obsMeltFluxUnc,
                                       obsLegend=list(obsDict.keys()))

        # do this before the inset because otherwise it moves the inset
        # and cartopy doesn't play too well with tight_layout anyway
        plt.tight_layout()

        add_inset(fig, fc, width=2.0, height=2.0)

        savefig(outFileName)

        caption = 'Running Mean of Total Melt Flux  under Ice ' \
                  'Shelves in the {} Region'.format(title)
        write_image_xml(
            config=config,
            filePrefix=filePrefix,
            componentName='Ocean',
            componentSubdirectory='ocean',
            galleryGroup='Antarctic Melt Time Series',
            groupLink='antmelttime',
            gallery='Total Melt Flux',
            thumbnailDescription=title,
            imageDescription=caption,
            imageCaption=caption)

        xLabel = 'Time (yr)'
        yLabel = 'Melt Rate (m/yr)'

        timeSeries = meltRates.isel(nRegions=self.regionIndex)

        filePrefix = 'melt_rate_{}'.format(self.iceShelf.replace(' ', '_'))
        outFileName = '{}/{}.png'.format(self.plotsDirectory, filePrefix)

        fields = [timeSeries]
        lineColors = ['k']
        lineWidths = [2.5]
        legendText = [mainRunName]
        if plotControl:
            fields.append(refMeltRates.isel(nRegions=self.regionIndex))
            lineColors.append('r')
            lineWidths.append(1.2)
            legendText.append(controlRunName)

        if config.has_option(self.taskName, 'firstYearXTicks'):
            firstYearXTicks = config.getint(self.taskName,
                                            'firstYearXTicks')
        else:
            firstYearXTicks = None

        if config.has_option(self.taskName, 'yearStrideXTicks'):
            yearStrideXTicks = config.getint(self.taskName,
                                             'yearStrideXTicks')
        else:
            yearStrideXTicks = None

        fig = timeseries_analysis_plot(config, fields, calendar=calendar,
                                       title=title, xlabel=xLabel,
                                       ylabel=yLabel,
                                       movingAveragePoints=movingAverageMonths,
                                       lineColors=lineColors,
                                       lineWidths=lineWidths,
                                       legendText=legendText,
                                       firstYearXTicks=firstYearXTicks,
                                       yearStrideXTicks=yearStrideXTicks,
                                       obsMean=obsMeltRate,
                                       obsUncertainty=obsMeltRateUnc,
                                       obsLegend=list(obsDict.keys()))

        # do this before the inset because otherwise it moves the inset
        # and cartopy doesn't play too well with tight_layout anyway
        plt.tight_layout()

        add_inset(fig, fc, width=2.0, height=2.0)

        savefig(outFileName)

        caption = 'Running Mean of Area-averaged Melt Rate under Ice ' \
                  'Shelves in the {} Region'.format(title)
        write_image_xml(
            config=config,
            filePrefix=filePrefix,
            componentName='Ocean',
            componentSubdirectory='ocean',
            galleryGroup='Antarctic Melt Time Series',
            groupLink='antmelttime',
            gallery='Area-averaged Melt Rate',
            thumbnailDescription=title,
            imageDescription=caption,
            imageCaption=caption)
    def run_task(self):  # {{{
        """
        Compute vertical agregates of the data and plot the time series
        """
        # Authors
        # -------
        # Xylar Asay-Davis, Milena Veneziani, Greg Streletz

        self.logger.info("\nPlotting depth-integrated time series of "
                         "{}...".format(self.fieldNameInTitle))

        config = self.config
        calendar = self.calendar

        mainRunName = config.get('runs', 'mainRunName')

        plotTitles = config.getExpression('regions', 'plotTitles')
        allRegionNames = config.getExpression('regions', 'regions')
        regionIndex = allRegionNames.index(self.regionName)
        regionNameInTitle = plotTitles[regionIndex]

        startDate = config.get('timeSeries', 'startDate')
        endDate = config.get('timeSeries', 'endDate')

        # Load data
        self.logger.info('  Load ocean data...')
        ds = open_mpas_dataset(fileName=self.inFileName,
                               calendar=calendar,
                               variableList=[self.mpasFieldName, 'depth'],
                               timeVariableNames=None,
                               startDate=startDate,
                               endDate=endDate)
        ds = ds.isel(nOceanRegionsTmp=regionIndex)

        depths = ds.depth.values

        divisionDepths = config.getExpression(self.sectionName, 'depths')

        # for each depth interval to plot, determine the top and bottom depth
        topDepths = [0, 0] + divisionDepths
        bottomDepths = [depths[-1]] + divisionDepths + [depths[-1]]

        legends = []
        for top, bottom in zip(topDepths, bottomDepths):
            if bottom == depths[-1]:
                legends.append('{}m-bottom'.format(top))
            else:
                legends.append('{}m-{}m'.format(top, bottom))

        # more possible symbols than we typically use
        lines = ['-', '-', '--', None, None, None, None]
        markers = [None, None, None, '+', 'o', '^', 'v']
        widths = [5, 3, 3, 3, 3, 3, 3]
        points = [None, None, None, 300, 300, 300, 300]

        color = 'k'

        xLabel = 'Time [years]'
        yLabel = self.yAxisLabel

        title = '{}, {} \n {} (black)'.format(self.fieldNameInTitle,
                                              regionNameInTitle, mainRunName)

        outFileName = '{}/{}.png'.format(self.plotsDirectory, self.filePrefix)

        timeSeries = []
        lineColors = []
        lineStyles = []
        lineMarkers = []
        lineWidths = []
        maxPoints = []
        legendText = []

        for rangeIndex in range(len(topDepths)):
            top = topDepths[rangeIndex]
            bottom = bottomDepths[rangeIndex]
            field = ds[self.mpasFieldName].where(ds.depth > top)
            field = field.where(ds.depth <= bottom)
            timeSeries.append(field.sum('nVertLevels'))

            lineColors.append(color)
            lineStyles.append(lines[rangeIndex])
            lineMarkers.append(markers[rangeIndex])
            lineWidths.append(widths[rangeIndex])
            maxPoints.append(points[rangeIndex])
            legendText.append(legends[rangeIndex])

        preprocessedReferenceRunName = config.get(
            'runs', 'preprocessedReferenceRunName')
        if preprocessedReferenceRunName != 'None':
            preprocessedInputDirectory = config.get(
                'oceanPreprocessedReference', 'baseDirectory')

            self.logger.info('  Load in preprocessed reference data...')
            preprocessedFilePrefix = config.get(self.sectionName,
                                                'preprocessedFilePrefix')
            inFilesPreprocessed = '{}/{}.{}.year*.nc'.format(
                preprocessedInputDirectory, preprocessedFilePrefix,
                preprocessedReferenceRunName)

            combine_time_series_with_ncrcat(
                inFilesPreprocessed,
                self.preprocessedIntermediateFileName,
                logger=self.logger)
            dsPreprocessed = open_mpas_dataset(
                fileName=self.preprocessedIntermediateFileName,
                calendar=calendar,
                timeVariableNames='xtime')

            yearStart = days_to_datetime(ds.Time.min(), calendar=calendar).year
            yearEnd = days_to_datetime(ds.Time.max(), calendar=calendar).year
            timeStart = date_to_days(year=yearStart,
                                     month=1,
                                     day=1,
                                     calendar=calendar)
            timeEnd = date_to_days(year=yearEnd,
                                   month=12,
                                   day=31,
                                   calendar=calendar)

            yearEndPreprocessed = days_to_datetime(dsPreprocessed.Time.max(),
                                                   calendar=calendar).year
            if yearStart <= yearEndPreprocessed:
                dsPreprocessed = dsPreprocessed.sel(
                    Time=slice(timeStart, timeEnd))
            else:
                self.logger.warning('Warning: Preprocessed time series ends '
                                    'before the timeSeries startYear and will '
                                    'not be plotted.')
                preprocessedReferenceRunName = 'None'

            # rolling mean seems to have trouble with dask data sets so we
            # write out the data set and read it back as a single-file data set
            # (without dask)
            dsPreprocessed = dsPreprocessed.drop('xtime')
            write_netcdf(dsPreprocessed, self.preprocessedFileName)
            dsPreprocessed = xarray.open_dataset(self.preprocessedFileName)

        if preprocessedReferenceRunName != 'None':
            color = 'purple'
            title = '{} \n {} (purple)'.format(title,
                                               preprocessedReferenceRunName)

            preprocessedFieldPrefix = config.get(self.sectionName,
                                                 'preprocessedFieldPrefix')

            movingAveragePoints = config.getint(self.sectionName,
                                                'movingAveragePoints')

            suffixes = ['tot'
                        ] + ['{}m'.format(depth)
                             for depth in divisionDepths] + ['btm']

            # these preprocessed data are already anomalies
            dsPreprocessed = compute_moving_avg(dsPreprocessed,
                                                movingAveragePoints)
            for rangeIndex in range(len(suffixes)):
                variableName = '{}_{}'.format(preprocessedFieldPrefix,
                                              suffixes[rangeIndex])
                if variableName in list(dsPreprocessed.data_vars.keys()):
                    timeSeries.append(dsPreprocessed[variableName])
                else:
                    self.logger.warning(
                        'Warning: Preprocessed variable {} '
                        'not found. Skipping.'.format(variableName))
                    timeSeries.extend(None)

                lineColors.append(color)
                lineStyles.append(lines[rangeIndex])
                lineMarkers.append(markers[rangeIndex])
                lineWidths.append(widths[rangeIndex])
                maxPoints.append(points[rangeIndex])
                legendText.append(None)

        if self.controlConfig is not None:

            controlRunName = self.controlConfig.get('runs', 'mainRunName')

            title = '{} \n {} (red)'.format(title, controlRunName)

            self.logger.info('  Load ocean data from control run...')
            controlStartYear = self.controlConfig.getint(
                'timeSeries', 'startYear')
            controlEndYear = self.controlConfig.getint('timeSeries', 'endYear')
            controlStartDate = '{:04d}-01-01_00:00:00'.format(controlStartYear)
            controlEndDate = '{:04d}-12-31_23:59:59'.format(controlEndYear)
            dsRef = open_mpas_dataset(
                fileName=self.refFileName,
                calendar=calendar,
                variableList=[self.mpasFieldName, 'depth'],
                timeVariableNames=None,
                startDate=controlStartDate,
                endDate=controlEndDate)
            dsRef = dsRef.isel(nOceanRegionsTmp=regionIndex)

            color = 'r'

            for rangeIndex in range(len(topDepths)):
                top = topDepths[rangeIndex]
                bottom = bottomDepths[rangeIndex]
                field = dsRef[self.mpasFieldName].where(dsRef.depth > top)
                field = field.where(dsRef.depth <= bottom)
                timeSeries.append(field.sum('nVertLevels'))

                lineColors.append(color)
                lineStyles.append(lines[rangeIndex])
                lineMarkers.append(markers[rangeIndex])
                lineWidths.append(widths[rangeIndex])
                maxPoints.append(points[rangeIndex])
                legendText.append(None)

        if config.has_option(self.taskName, 'firstYearXTicks'):
            firstYearXTicks = config.getint(self.taskName, 'firstYearXTicks')
        else:
            firstYearXTicks = None

        if config.has_option(self.taskName, 'yearStrideXTicks'):
            yearStrideXTicks = config.getint(self.taskName, 'yearStrideXTicks')
        else:
            yearStrideXTicks = None

        timeseries_analysis_plot(config=config,
                                 dsvalues=timeSeries,
                                 calendar=calendar,
                                 title=title,
                                 xlabel=xLabel,
                                 ylabel=yLabel,
                                 movingAveragePoints=None,
                                 lineColors=lineColors,
                                 lineStyles=lineStyles,
                                 markers=lineMarkers,
                                 lineWidths=lineWidths,
                                 legendText=legendText,
                                 maxPoints=maxPoints,
                                 firstYearXTicks=firstYearXTicks,
                                 yearStrideXTicks=yearStrideXTicks)

        savefig(outFileName)

        write_image_xml(config=config,
                        filePrefix=self.filePrefix,
                        componentName='Ocean',
                        componentSubdirectory='ocean',
                        galleryGroup=self.galleryGroup,
                        groupLink=self.groupLink,
                        gallery=self.galleryName,
                        thumbnailDescription='{} {}'.format(
                            self.regionName, self.thumbnailSuffix),
                        imageDescription=self.imageCaption,
                        imageCaption=self.imageCaption)
示例#4
0
    def run_task(self):  # {{{
        """
        Performs analysis of time series of sea-ice properties.
        """
        # Authors
        # -------
        # Xylar Asay-Davis, Milena Veneziani

        self.logger.info("\nPlotting sea-ice area and volume time series...")

        config = self.config
        calendar = self.calendar

        sectionName = self.taskName

        plotTitles = {'iceArea': 'Sea-ice area',
                      'iceVolume': 'Sea-ice volume',
                      'iceThickness': 'Sea-ice mean thickness'}

        units = {'iceArea': '[km$^2$]',
                 'iceVolume': '[10$^3$ km$^3$]',
                 'iceThickness': '[m]'}

        obsFileNames = {
            'iceArea': {'NH': build_obs_path(
                config, 'seaIce',
                relativePathOption='areaNH',
                relativePathSection=sectionName),
                'SH': build_obs_path(
                config, 'seaIce',
                relativePathOption='areaSH',
                relativePathSection=sectionName)},
            'iceVolume': {'NH': build_obs_path(
                config, 'seaIce',
                relativePathOption='volNH',
                relativePathSection=sectionName),
                'SH': build_obs_path(
                config, 'seaIce',
                relativePathOption='volSH',
                relativePathSection=sectionName)}}

        # Some plotting rules
        titleFontSize = config.get('timeSeriesSeaIceAreaVol', 'titleFontSize')

        mainRunName = config.get('runs', 'mainRunName')
        preprocessedReferenceRunName = \
            config.get('runs', 'preprocessedReferenceRunName')
        preprocessedReferenceDirectory = \
            config.get('seaIcePreprocessedReference', 'baseDirectory')

        compareWithObservations = config.getboolean('timeSeriesSeaIceAreaVol',
                                                    'compareWithObservations')

        movingAveragePoints = config.getint('timeSeriesSeaIceAreaVol',
                                            'movingAveragePoints')

        polarPlot = config.getboolean('timeSeriesSeaIceAreaVol', 'polarPlot')

        outputDirectory = build_config_full_path(config, 'output',
                                                 'timeseriesSubdirectory')

        make_directories(outputDirectory)

        self.logger.info('  Load sea-ice data...')
        # Load mesh

        dsTimeSeries = self._compute_area_vol()

        yearStart = days_to_datetime(dsTimeSeries['NH'].Time.min(),
                                     calendar=calendar).year
        yearEnd = days_to_datetime(dsTimeSeries['NH'].Time.max(),
                                   calendar=calendar).year
        timeStart = date_to_days(year=yearStart, month=1, day=1,
                                 calendar=calendar)
        timeEnd = date_to_days(year=yearEnd, month=12, day=31,
                               calendar=calendar)

        if preprocessedReferenceRunName != 'None':
            # determine if we're beyond the end of the preprocessed data
            # (and go ahead and cache the data set while we're checking)
            outFolder = '{}/preprocessed'.format(outputDirectory)
            make_directories(outFolder)
            inFilesPreprocessed = '{}/icevol.{}.year*.nc'.format(
                preprocessedReferenceDirectory, preprocessedReferenceRunName)
            outFileName = '{}/iceVolume.nc'.format(outFolder)

            combine_time_series_with_ncrcat(inFilesPreprocessed,
                                            outFileName,
                                            logger=self.logger)
            dsPreprocessed = open_mpas_dataset(fileName=outFileName,
                                               calendar=calendar,
                                               timeVariableNames='xtime')
            preprocessedYearEnd = days_to_datetime(dsPreprocessed.Time.max(),
                                                   calendar=calendar).year
            if yearStart <= preprocessedYearEnd:
                dsPreprocessedTimeSlice = \
                    dsPreprocessed.sel(Time=slice(timeStart, timeEnd))
            else:
                self.logger.warning('Preprocessed time series ends before the '
                                    'timeSeries startYear and will not be '
                                    'plotted.')
                preprocessedReferenceRunName = 'None'

        if self.controlConfig is not None:

            dsTimeSeriesRef = {}
            baseDirectory = build_config_full_path(
                self.controlConfig, 'output', 'timeSeriesSubdirectory')

            controlRunName = self.controlConfig.get('runs', 'mainRunName')

            for hemisphere in ['NH', 'SH']:
                inFileName = '{}/seaIceAreaVol{}.nc'.format(baseDirectory,
                                                            hemisphere)

                dsTimeSeriesRef[hemisphere] = xr.open_dataset(inFileName)

        norm = {'iceArea': 1e-6,  # m^2 to km^2
                'iceVolume': 1e-12,  # m^3 to 10^3 km^3
                'iceThickness': 1.}

        xLabel = 'Time [years]'

        galleryGroup = 'Time Series'
        groupLink = 'timeseries'

        obs = {}
        preprocessed = {}
        figureNameStd = {}
        figureNamePolar = {}
        title = {}
        plotVars = {}
        obsLegend = {}
        plotVarsRef = {}

        for hemisphere in ['NH', 'SH']:

            self.logger.info('  Make {} plots...'.format(hemisphere))

            for variableName in ['iceArea', 'iceVolume']:
                key = (hemisphere, variableName)

                # apply the norm to each variable
                plotVars[key] = (norm[variableName] *
                                 dsTimeSeries[hemisphere][variableName])

                if self.controlConfig is not None:
                    plotVarsRef[key] = norm[variableName] * \
                        dsTimeSeriesRef[hemisphere][variableName]

                prefix = '{}/{}{}_{}'.format(self.plotsDirectory,
                                             variableName,
                                             hemisphere,
                                             mainRunName)

                figureNameStd[key] = '{}.png'.format(prefix)
                figureNamePolar[key] = '{}_polar.png'.format(prefix)

                title[key] = '{} ({})'.format(plotTitles[variableName],
                                              hemisphere)

            if compareWithObservations:
                key = (hemisphere, 'iceArea')
                obsLegend[key] = 'SSM/I observations, annual cycle '
                if hemisphere == 'NH':
                    key = (hemisphere, 'iceVolume')
                    obsLegend[key] = 'PIOMAS, annual cycle (blue)'

            if preprocessedReferenceRunName != 'None':
                for variableName in ['iceArea', 'iceVolume']:
                    key = (hemisphere, variableName)

            if compareWithObservations:

                outFolder = '{}/obs'.format(outputDirectory)
                make_directories(outFolder)
                outFileName = '{}/iceArea{}.nc'.format(outFolder, hemisphere)

                combine_time_series_with_ncrcat(
                    obsFileNames['iceArea'][hemisphere],
                    outFileName, logger=self.logger)
                dsObs = open_mpas_dataset(fileName=outFileName,
                                          calendar=calendar,
                                          timeVariableNames='xtime')
                key = (hemisphere, 'iceArea')
                obs[key] = self._replicate_cycle(plotVars[key], dsObs.IceArea,
                                                 calendar)

                key = (hemisphere, 'iceVolume')
                if hemisphere == 'NH':
                    outFileName = '{}/iceVolume{}.nc'.format(outFolder,
                                                             hemisphere)
                    combine_time_series_with_ncrcat(
                        obsFileNames['iceVolume'][hemisphere],
                        outFileName, logger=self.logger)
                    dsObs = open_mpas_dataset(fileName=outFileName,
                                              calendar=calendar,
                                              timeVariableNames='xtime')
                    obs[key] = self._replicate_cycle(plotVars[key],
                                                     dsObs.IceVol,
                                                     calendar)
                else:
                    obs[key] = None

            if preprocessedReferenceRunName != 'None':
                outFolder = '{}/preprocessed'.format(outputDirectory)
                inFilesPreprocessed = '{}/icearea.{}.year*.nc'.format(
                    preprocessedReferenceDirectory,
                    preprocessedReferenceRunName)

                outFileName = '{}/iceArea.nc'.format(outFolder)

                combine_time_series_with_ncrcat(inFilesPreprocessed,
                                                outFileName,
                                                logger=self.logger)
                dsPreprocessed = open_mpas_dataset(fileName=outFileName,
                                                   calendar=calendar,
                                                   timeVariableNames='xtime')
                dsPreprocessedTimeSlice = dsPreprocessed.sel(
                    Time=slice(timeStart, timeEnd))
                key = (hemisphere, 'iceArea')
                preprocessed[key] = dsPreprocessedTimeSlice[
                    'icearea_{}'.format(hemisphere.lower())]

                inFilesPreprocessed = '{}/icevol.{}.year*.nc'.format(
                    preprocessedReferenceDirectory,
                    preprocessedReferenceRunName)
                outFileName = '{}/iceVolume.nc'.format(outFolder)

                combine_time_series_with_ncrcat(inFilesPreprocessed,
                                                outFileName,
                                                logger=self.logger)
                dsPreprocessed = open_mpas_dataset(fileName=outFileName,
                                                   calendar=calendar,
                                                   timeVariableNames='xtime')
                dsPreprocessedTimeSlice = dsPreprocessed.sel(
                    Time=slice(timeStart, timeEnd))
                key = (hemisphere, 'iceVolume')
                preprocessed[key] = dsPreprocessedTimeSlice[
                    'icevolume_{}'.format(hemisphere.lower())]

            for variableName in ['iceArea', 'iceVolume']:
                key = (hemisphere, variableName)
                dsvalues = [plotVars[key]]
                legendText = [mainRunName]
                lineColors = ['k']
                lineWidths = [3]
                if compareWithObservations and key in obsLegend.keys():
                    dsvalues.append(obs[key])
                    legendText.append(obsLegend[key])
                    lineColors.append('b')
                    lineWidths.append(1.2)
                if preprocessedReferenceRunName != 'None':
                    dsvalues.append(preprocessed[key])
                    legendText.append(preprocessedReferenceRunName)
                    lineColors.append('purple')
                    lineWidths.append(1.2)

                if self.controlConfig is not None:
                    dsvalues.append(plotVarsRef[key])
                    legendText.append(controlRunName)
                    lineColors.append('r')
                    lineWidths.append(1.2)

                if config.has_option(sectionName, 'firstYearXTicks'):
                    firstYearXTicks = config.getint(sectionName,
                                                    'firstYearXTicks')
                else:
                    firstYearXTicks = None

                if config.has_option(sectionName, 'yearStrideXTicks'):
                    yearStrideXTicks = config.getint(sectionName,
                                                     'yearStrideXTicks')
                else:
                    yearStrideXTicks = None

                # separate plots for nothern and southern hemispheres
                timeseries_analysis_plot(config, dsvalues,
                                         movingAveragePoints,
                                         title[key], xLabel,
                                         units[variableName],
                                         calendar=calendar,
                                         lineColors=lineColors,
                                         lineWidths=lineWidths,
                                         legendText=legendText,
                                         titleFontSize=titleFontSize,
                                         firstYearXTicks=firstYearXTicks,
                                         yearStrideXTicks=yearStrideXTicks)

                savefig(figureNameStd[key])

                filePrefix = '{}{}_{}'.format(variableName,
                                              hemisphere,
                                              mainRunName)
                thumbnailDescription = '{} {}'.format(
                    hemisphere, plotTitles[variableName])
                caption = 'Running mean of {}'.format(
                    thumbnailDescription)
                write_image_xml(
                    config,
                    filePrefix,
                    componentName='Sea Ice',
                    componentSubdirectory='sea_ice',
                    galleryGroup=galleryGroup,
                    groupLink=groupLink,
                    thumbnailDescription=thumbnailDescription,
                    imageDescription=caption,
                    imageCaption=caption)

                if (polarPlot):
                    timeseries_analysis_plot_polar(
                        config,
                        dsvalues,
                        movingAveragePoints,
                        title[key],
                        lineColors=lineColors,
                        lineWidths=lineWidths,
                        legendText=legendText,
                        titleFontSize=titleFontSize)

                    savefig(figureNamePolar[key])

                    filePrefix = '{}{}_{}_polar'.format(variableName,
                                                        hemisphere,
                                                        mainRunName)
                    write_image_xml(
                        config,
                        filePrefix,
                        componentName='Sea Ice',
                        componentSubdirectory='sea_ice',
                        galleryGroup=galleryGroup,
                        groupLink=groupLink,
                        thumbnailDescription=thumbnailDescription,
                        imageDescription=caption,
                        imageCaption=caption)
    def run_task(self):  # {{{
        """
        Plots time-series output of transport through transects.
        """
        # Authors
        # -------
        # Xylar Asay-Davis, Stephen Price

        self.logger.info("\nPlotting time series of transport through "
                         "{}...".format(self.transect))

        self.logger.info('  Load transport data...')

        obsDict = {
            'Drake Passage': [120, 175],
            'Tasmania-Ant': [147, 167],
            'Africa-Ant': None,
            'Antilles Inflow': [-23.1, -13.7],
            'Mona Passage': [-3.8, -1.4],
            'Windward Passage': [-7.2, -6.8],
            'Florida-Cuba': [30, 33],
            'Florida-Bahamas': [30, 33],
            'Indonesian Throughflow': [-21, -11],
            'Agulhas': [-90, -50],
            'Mozambique Channel': [-20, -8],
            'Bering Strait': [0.6, 1.0],
            'Lancaster Sound': [-1.0, -0.5],
            'Fram Strait': [-4.7, 0.7],
            'Davis Strait': [-1.6, -3.6],
            'Barents Sea Opening': [1.4, 2.6],
            'Nares Strait': [-1.8, 0.2]
        }

        config = self.config
        calendar = self.calendar

        fcAll = read_feature_collection(self.transportTransectFileName)

        fc = FeatureCollection()
        for feature in fcAll.features:
            if feature['properties']['name'] == self.transect:
                fc.add_feature(feature)
                break

        transport, trans_mean, trans_std = self._load_transport(config)

        if self.transect in obsDict:
            bounds = obsDict[self.transect]
        else:
            bounds = None

        plotControl = self.controlConfig is not None

        mainRunName = config.get('runs', 'mainRunName')
        movingAverageMonths = config.getint('timeSeriesTransport',
                                            'movingAverageMonths')

        self.logger.info('  Plotting...')

        transectName = self.transect.replace('_', ' ')
        title = transectName
        thumbnailDescription = transectName

        xLabel = 'Time (yr)'
        yLabel = 'Transport (Sv)'

        filePrefix = 'transport_{}'.format(self.transect.replace(' ', '_'))
        outFileName = '{}/{}.png'.format(self.plotsDirectory, filePrefix)

        fields = [transport]
        lineColors = ['k']
        lineWidths = [2.5]
        meanString = 'mean={:.2f} $\pm$ {:.2f}'.format(trans_mean, trans_std)
        if plotControl:
            controlRunName = self.controlConfig.get('runs', 'mainRunName')
            ref_transport, ref_mean, ref_std = \
                self._load_transport(self.controlConfig)
            refMeanString = 'mean={:.2f} $\pm$ {:.2f}'.format(
                ref_mean, ref_std)
            fields.append(ref_transport)
            lineColors.append('r')
            lineWidths.append(1.2)
            legendText = [
                '{} ({})'.format(mainRunName, meanString),
                '{} ({})'.format(controlRunName, refMeanString)
            ]

        else:
            legendText = [mainRunName]
            title = '{} ({})'.format(title, meanString)

        if config.has_option(self.taskName, 'firstYearXTicks'):
            firstYearXTicks = config.getint(self.taskName, 'firstYearXTicks')
        else:
            firstYearXTicks = None

        if config.has_option(self.taskName, 'yearStrideXTicks'):
            yearStrideXTicks = config.getint(self.taskName, 'yearStrideXTicks')
        else:
            yearStrideXTicks = None

        fig = timeseries_analysis_plot(config,
                                       fields,
                                       calendar=calendar,
                                       title=title,
                                       xlabel=xLabel,
                                       ylabel=yLabel,
                                       movingAveragePoints=movingAverageMonths,
                                       lineColors=lineColors,
                                       lineWidths=lineWidths,
                                       legendText=legendText,
                                       firstYearXTicks=firstYearXTicks,
                                       yearStrideXTicks=yearStrideXTicks)

        if bounds is not None:
            t = transport.Time.values
            plt.gca().fill_between(t,
                                   bounds[0] * numpy.ones_like(t),
                                   bounds[1] * numpy.ones_like(t),
                                   alpha=0.3,
                                   label='observations')
            plt.legend(loc='lower left')

        # do this before the inset because otherwise it moves the inset
        # and cartopy doesn't play too well with tight_layout anyway
        plt.tight_layout()

        add_inset(fig, fc, width=2.0, height=2.0)

        savefig(outFileName)

        caption = 'Transport through the {} Transect'.format(transectName)
        write_image_xml(config=config,
                        filePrefix=filePrefix,
                        componentName='Ocean',
                        componentSubdirectory='ocean',
                        galleryGroup='Transport Time Series',
                        groupLink='transporttime',
                        thumbnailDescription=thumbnailDescription,
                        imageDescription=caption,
                        imageCaption=caption)
示例#6
0
    def run_task(self):  # {{{
        """
        Performs analysis of the time-series output of sea-surface temperature
        (SST).
        """
        # Authors
        # -------
        # Xylar Asay-Davis, Milena Veneziani

        self.logger.info("\nPlotting SST time series...")

        self.logger.info('  Load SST data...')

        config = self.config
        calendar = self.calendar

        mainRunName = config.get('runs', 'mainRunName')
        preprocessedReferenceRunName = \
            config.get('runs', 'preprocessedReferenceRunName')
        preprocessedInputDirectory = config.get('oceanPreprocessedReference',
                                                'baseDirectory')

        movingAveragePoints = config.getint('timeSeriesSST',
                                            'movingAveragePoints')

        regions = config.getExpression('regions', 'regions')
        plotTitles = config.getExpression('regions', 'plotTitles')
        regionsToPlot = config.getExpression('timeSeriesSST', 'regions')

        regionIndicesToPlot = [
            regions.index(region) for region in regionsToPlot
        ]

        outputDirectory = build_config_full_path(config, 'output',
                                                 'timeseriesSubdirectory')

        make_directories(outputDirectory)

        dsSST = open_mpas_dataset(fileName=self.inputFile,
                                  calendar=calendar,
                                  variableList=self.variableList,
                                  startDate=self.startDate,
                                  endDate=self.endDate)

        yearStart = days_to_datetime(dsSST.Time.min(), calendar=calendar).year
        yearEnd = days_to_datetime(dsSST.Time.max(), calendar=calendar).year
        timeStart = date_to_days(year=yearStart,
                                 month=1,
                                 day=1,
                                 calendar=calendar)
        timeEnd = date_to_days(year=yearEnd,
                               month=12,
                               day=31,
                               calendar=calendar)

        if self.controlConfig is not None:
            baseDirectory = build_config_full_path(self.controlConfig,
                                                   'output',
                                                   'timeSeriesSubdirectory')

            controlFileName = '{}/{}.nc'.format(
                baseDirectory, self.mpasTimeSeriesTask.fullTaskName)

            controlStartYear = self.controlConfig.getint(
                'timeSeries', 'startYear')
            controlEndYear = self.controlConfig.getint('timeSeries', 'endYear')
            controlStartDate = '{:04d}-01-01_00:00:00'.format(controlStartYear)
            controlEndDate = '{:04d}-12-31_23:59:59'.format(controlEndYear)

            dsRefSST = open_mpas_dataset(fileName=controlFileName,
                                         calendar=calendar,
                                         variableList=self.variableList,
                                         startDate=controlStartDate,
                                         endDate=controlEndDate)
        else:
            dsRefSST = None

        if preprocessedReferenceRunName != 'None':
            self.logger.info('  Load in SST for a preprocesses reference '
                             'run...')
            inFilesPreprocessed = '{}/SST.{}.year*.nc'.format(
                preprocessedInputDirectory, preprocessedReferenceRunName)

            outFolder = '{}/preprocessed'.format(outputDirectory)
            make_directories(outFolder)
            outFileName = '{}/sst.nc'.format(outFolder)

            combine_time_series_with_ncrcat(inFilesPreprocessed,
                                            outFileName,
                                            logger=self.logger)
            dsPreprocessed = open_mpas_dataset(fileName=outFileName,
                                               calendar=calendar,
                                               timeVariableNames='xtime')
            yearEndPreprocessed = days_to_datetime(dsPreprocessed.Time.max(),
                                                   calendar=calendar).year
            if yearStart <= yearEndPreprocessed:
                dsPreprocessedTimeSlice = \
                    dsPreprocessed.sel(Time=slice(timeStart, timeEnd))
            else:
                self.logger.warning('Preprocessed time series ends before the '
                                    'timeSeries startYear and will not be '
                                    'plotted.')
                preprocessedReferenceRunName = 'None'

        self.logger.info('  Make plots...')
        for regionIndex in regionIndicesToPlot:
            region = regions[regionIndex]

            title = '{} SST'.format(plotTitles[regionIndex])
            xLabel = 'Time [years]'
            yLabel = r'[$\degree$C]'

            varName = self.variableList[0]
            SST = dsSST[varName].isel(nOceanRegions=regionIndex)

            filePrefix = self.filePrefixes[region]

            outFileName = '{}/{}.png'.format(self.plotsDirectory, filePrefix)

            lineColors = ['k']
            lineWidths = [3]

            fields = [SST]
            legendText = [mainRunName]

            if dsRefSST is not None:
                refSST = dsRefSST[varName].isel(nOceanRegions=regionIndex)
                fields.append(refSST)
                lineColors.append('r')
                lineWidths.append(1.5)
                controlRunName = self.controlConfig.get('runs', 'mainRunName')
                legendText.append(controlRunName)

            if preprocessedReferenceRunName != 'None':
                SST_v0 = dsPreprocessedTimeSlice.SST
                fields.append(SST_v0)
                lineColors.append('purple')
                lineWidths.append(1.5)
                legendText.append(preprocessedReferenceRunName)

            if config.has_option(self.taskName, 'firstYearXTicks'):
                firstYearXTicks = config.getint(self.taskName,
                                                'firstYearXTicks')
            else:
                firstYearXTicks = None

            if config.has_option(self.taskName, 'yearStrideXTicks'):
                yearStrideXTicks = config.getint(self.taskName,
                                                 'yearStrideXTicks')
            else:
                yearStrideXTicks = None

            timeseries_analysis_plot(config,
                                     fields,
                                     movingAveragePoints,
                                     title,
                                     xLabel,
                                     yLabel,
                                     calendar=calendar,
                                     lineColors=lineColors,
                                     lineWidths=lineWidths,
                                     legendText=legendText,
                                     firstYearXTicks=firstYearXTicks,
                                     yearStrideXTicks=yearStrideXTicks)

            savefig(outFileName)

            caption = 'Running Mean of {} Sea Surface Temperature'.format(
                region)
            write_image_xml(config=config,
                            filePrefix=filePrefix,
                            componentName='Ocean',
                            componentSubdirectory='ocean',
                            galleryGroup='Time Series',
                            groupLink='timeseries',
                            thumbnailDescription='{} SST'.format(region),
                            imageDescription=caption,
                            imageCaption=caption)