示例#1
0
文件: plot.py 项目: whynot-s/evo
 def _bind_mouse_events_to_canvas(axes: Axes3D, canvas: FigureCanvasBase):
     axes.mouse_init()
     # Event binding was possible through mouse_init() up to matplotlib 3.2.
     # In 3.3.0 this was moved, so we are forced to do it here.
     if mpl.__version__ >= "3.3.0":
         canvas.mpl_connect("button_press_event", axes._button_press)
         canvas.mpl_connect("button_release_event", axes._button_release)
         canvas.mpl_connect("motion_notify_event", axes._on_move)
示例#2
0
 def addmpl(self, fig):
   self.fig = fig
   self.canvas = FigureCanvas(fig)
   self.mplvl.addWidget(self.canvas)
   self.canvas.draw()
   self.toolbar = NavigationToolbar(self.canvas, 
                                    self.mplwindow, coordinates=True)
   self.mplvl.addWidget(self.toolbar)
   ax = fig.get_axes()[0]
   Axes3D.mouse_init(ax)
示例#3
0
 def addmpl(self, fig):
     self.fig = fig
     self.canvas = FigureCanvas(fig)
     self.mplvl.addWidget(self.canvas)
     self.canvas.draw()
     self.toolbar = NavigationToolbar(self.canvas,
                                      self.mplwindow,
                                      coordinates=True)
     self.mplvl.addWidget(self.toolbar)
     ax = fig.get_axes()[0]
     Axes3D.mouse_init(ax)
示例#4
0
    def __init__(self, *values, is_synchronised=True):
        self.figure = Figure()
        self.axes = list()
        self.lines = dict()
        self.__data = dict()
        self.__highlight_points = dict()
        self.__highlight_sections = dict()
        self.is_synchronised = is_synchronised

        self.addSubplots(*values)
        MatplotlibDrawingArea.__init__(self, self.figure)
        for subplot in self.axes:
            Axes3D.mouse_init(subplot)

        self.connect('notify::highlight-point', self.updateHighlightPoint)
        self.figure.canvas.mpl_connect('motion_notify_event', self.onMove)
示例#5
0
    def plot_3d(self, z_data, x_coverage, y_coverage, title=None, x_axis_label="X", y_axis_label="Y", z_axis_label="Z"):
        # 3D plotting is sort of a pain in the neck, and heavily dependent on data formatting.  This routine assumes that you are
        # providing the z height data as a two dimensional array array, and that the overall X and Y spans are
        # given, so the routine can automatically compute arrays comprising the X and Y positions.  If your data files contain the X and Y
        # positions explicitly, this routine AND the data file reader will require heavy modification to ensure that the data gets
        # passed and plotted correctly.

        # takes Z data as an X by Y array of z values, and computes the X and Y arrays based on the "coverage" provided and the size
        # of the Z array

        # \todo design a better way of handling x and y coordinates
        # these might be passed as strings by the config parser, so ensure that they are recast as integers
        # \todo use configobj validators to handle this casting
        x_coverage = int(x_coverage)
        y_coverage = int(y_coverage)

        z_data = npy.array(z_data)

        self.clear_figure()
        # set up some borders
        # these borders never go away, and screw up the other plots - leave them out until a better way is found to elegently fix them
        # self.fig.subplots_adjust(left=0.05)
        # self.fig.subplots_adjust(right=0.95)
        # self.fig.subplots_adjust(top=0.97)
        # self.fig.subplots_adjust(bottom = 0.03)

        axes = self.fig.add_subplot(111, projection="3d")

        # allow us to use the mouse to spin the 3d plot around
        Axes3D.mouse_init(axes)

        (x_data, y_data) = compute_3d_coordinates(z_data, x_coverage, y_coverage)

        axes.plot_wireframe(x_data, y_data, z_data)

        if title:
            axes.set_title(title)
        axes.set_xlabel(x_axis_label)
        axes.set_ylabel(y_axis_label)
        axes.set_zlabel(z_axis_label)

        axes.view_init(self.elev_3d, self.azim_3d)
        self.canvas.draw()

        self.current_plot_type = "3D"
示例#6
0
    def add_mpl_figure(self, fig):

        self.mpl_canvas = FigureCanvasTkAgg(fig, self)
        #self.mpl_canvas.show()

        self.mpl_canvas.get_tk_widget().pack(side=tk.TOP,
                                             fill=tk.BOTH,
                                             expand=True)

        #adds toolbar -
        self.toolbar = NavigationToolbar2Tk(
            self.mpl_canvas, self)  #sometimes also NavigationToolbar2TkAgg
        self.toolbar.update()
        ax = fig.get_axes()[0]
        Axes3D.mouse_init(ax)  # enable 3d mouse drag
        #-

        self.mpl_canvas._tkcanvas.pack(side=tk.TOP, fill=tk.BOTH, expand=True)
    def __init__(self, X, Y, Z, data, n, parent):
        self.fig = Figure()
        self.axes = self.fig.add_subplot(121)
        g = data
        data = data[:, :, int(np.fix(n * (len(Z) - 1) / np.max(Z)))]
        self.axes.imshow(data,
                         cmap=plt.cm.jet,
                         interpolation='nearest',
                         origin='lower',
                         extent=[np.min(X),
                                 np.max(X),
                                 np.min(Y),
                                 np.max(Y)],
                         vmin=np.min(g),
                         vmax=np.max(g))

        self.axes2 = self.fig.add_subplot(122, projection='3d')

        FigureCanvas.__init__(self, self.fig)
        Axes3D.mouse_init(self.axes2)
        cset = self.axes2.contourf(X,
                                   Y,
                                   data,
                                   min(data.shape),
                                   zdir='z',
                                   offset=n,
                                   cmap=plt.cm.jet,
                                   vmin=np.min(g),
                                   vmax=np.max(g))

        self.axes2.set_zlim((np.max(Z), np.min(Z)))
        self.fig.colorbar(cset)

        self.setParent(parent)
        FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding,
                                   QSizePolicy.Expanding)
        FigureCanvas.updateGeometry(self)
示例#8
0
 def start_plot(self, n, l, m, X, Y, Z):
     self.fig.suptitle('Electron cloud Distribution of {}'.format(
         chooser(n, l, m)[1]))
     Axes3D.mouse_init(self.axes)
     x = np.linspace(-X, X, 100)
     y = np.linspace(-Y, Y, 100)
     z = np.linspace(-Z, Z, 100)
     ans_x, ans_y, ans_z, ans_x2, ans_y2, ans_z2 = [], [], [], [], [], []
     for i in x:
         for j in y:
             for k in z:
                 if 0.09 < chooser(n, l, m, i, j, k)[0] < 0.11:
                     ans_x.append(i)
                     ans_y.append(j)
                     ans_z.append(k)
                 if -0.11 < chooser(n, l, m, i, j, k)[0] < -0.09:
                     ans_x2.append(i)
                     ans_y2.append(j)
                     ans_z2.append(k)
     self.axes.scatter(ans_x, ans_y, ans_z, c='b', alpha=0.3)
     self.axes.scatter(ans_x2, ans_y2, ans_z2, c='r', alpha=0.3)
     # self.axes.legend(loc=0)
     self.axes.grid(True)
     self.draw()
            def create_graphic(result, dic, new):
                """
                Create a 2D or 3D graphic depending on the number of selected variables in the dictionary or if
                result contains 'Performance' outcome (performances of SVM classifier) or 'Actions' outcome (containing
                tweet, sentiment and characteristic vector)
                :param result: list of element to be used in the creation of the graphic
                :param dic: dictionary containing all the IntVar of every variable selectable and the number of
                selected variable. Used to create the graphic
                :return:
                """
                labels, vectors, graph_values = list(), list(), list()
                for element in result:
                    labels.append(element[1][0])
                    vectors.append(element[1][1][0])
                for index, key in enumerate(dic):
                    if key is not "count":
                        if dic[key].get():
                            graph_values.append([t[index] for t in vectors])

                if dic["count"] == 2:
                    ax = self.fig.add_subplot(111)
                    dic_count = dict()
                    for index, label in enumerate(labels):
                        if label == "Negative":
                            color = "red"
                        elif label == "Positive":
                            color = "green"
                        else:
                            color = "blue"
                        try:
                            dic_count[str(graph_values[0][index]) + str(graph_values[1][index])] += 1
                        except:
                            dic_count[str(graph_values[0][index]) + str(graph_values[1][index])] = 1
                        ax.scatter(graph_values[0][index], graph_values[1][index],
                                   s=min(dic_count[str(graph_values[0][index]) + str(graph_values[1][index])] * 50,
                                         2000),
                                   c=color,
                                   alpha=0.25)
                else:
                    ax = self.fig.add_subplot(111, projection="3d")
                    dic_count = dict()
                    for index, label in enumerate(labels):
                        if label == "Negative":
                            color = "red"
                        elif label == "Positive":
                            color = "green"
                        else:
                            color = "blue"
                        try:
                            dic_count[str(graph_values[0][index]) + str(graph_values[1][index]) + str(
                                    graph_values[2][index])] += 1
                        except:
                            dic_count[str(graph_values[0][index]) + str(graph_values[1][index]) + str(
                                    graph_values[2][index])] = 1
                        ax.scatter(graph_values[0][index], graph_values[1][index], graph_values[2][index],
                                   s=min(dic_count[str(graph_values[0][index]) + str(graph_values[1][index]) + str(
                                           graph_values[2][index])] * 50, 2000), c=color, alpha=0.25)
                ax.set_xlabel("X")
                ax.set_ylabel("Y")
                graph = FigureCanvasTkAgg(self.fig, self.graphic_frame[display.index("current") - 4])

                if not new:
                    self.canvas[display.index("current") - 4].grid_forget()
                    self.canvas[display.index("current") - 4] = graph.get_tk_widget()
                    self.canvas[display.index("current") - 4].grid()
                else:
                    self.canvas.append(graph.get_tk_widget())
                    self.canvas[-1].grid()

                if dic["count"] == 3:
                    Axes3D.mouse_init(ax)
示例#10
0
        worker = ComputeField(0, options)
        worker.signals.result.connect(self.on_calc_done)
        self.pool.start(worker)

    def on_calc_done(self, task):
        self.canvas1.draw()
        self.progressBar.setValue(100)
        self.btnField.setEnabled(True)


if __name__ == '__main__':

    fig = Figure()
    ax = fig.add_subplot(111, projection='3d')
    #fig.tight_layout()
    Axes3D.mouse_init(ax)

    fig1 = Figure()
    ax1 = fig1.add_subplot(111)
    #fig1.tight_layout()

    app = QtGui.QApplication(sys.argv)
    app.setStyle(QtGui.QStyleFactory.create('Fusion'))
    main = Main()
    main.addmpl(fig)
    main.addfield(fig1)
    main.show()
    sys.exit(app.exec_())

# In Qt 5.2, we can do
# view->setSizeAdjustPolicy(QAbstractScrollArea::AdjustToContentsOnFirstShow);
示例#11
0
    def __init__(self, data_file, 
                data_type = 2,
                color_map = 'jet',
                plot_label = "",
                time_zone = 0, 
                plot_max_freq = 30.0,
                run_quietly = False,
                save_file = '',
                parent = None):

        self.data_type = data_type
        self.data_file = VOAOutFile(data_file, \
                        time_zone=time_zone, \
                        data_type=self.data_type)

        self.image_defs = self.IMG_TYPE_DICT[self.data_type]
        
        #color_map = eval('P.cm.' + color_map)
    
        num_grp = self.data_file.get_number_of_groups()
        if num_grp < 2:
            md = Gtk.MessageDialog(parent, \
                Gtk.DialogFlags.MODAL,\
                Gtk.MessageType.ERROR, \
                Gtk.ButtonsType.CANCEL, \
                "There must be 2 groups or more")
            md.run()
            md.destroy()
            return
        plot_groups = list(range(0, num_grp))

        self.subplots = []
        number_of_subplots = len(plot_groups)
        
        matplotlib.rcParams['axes.edgecolor'] = 'gray'
        matplotlib.rcParams['axes.facecolor'] = 'white'
        matplotlib.rcParams['axes.grid'] = True
        matplotlib.rcParams['figure.facecolor'] = 'white'
        matplotlib.rcParams['legend.fancybox'] = True
        matplotlib.rcParams['legend.shadow'] = True
        matplotlib.rcParams['figure.subplot.hspace'] = 0.45
        matplotlib.rcParams['figure.subplot.wspace'] = 0.35
        matplotlib.rcParams['figure.subplot.right'] = 0.85
        colorbar_fontsize = 12
               
        self.main_title_fontsize = 24
        matplotlib.rcParams['legend.fontsize'] = 12
        matplotlib.rcParams['axes.labelsize'] = 12
        matplotlib.rcParams['axes.titlesize'] = 10
        matplotlib.rcParams['xtick.labelsize'] = 10
        matplotlib.rcParams['ytick.labelsize'] = 10
        self.x_axes_ticks = np.arange(0, 25, 2)

        self.fig = Figure()
        ax = Axes3D(self.fig)
        
        X = np.arange(0, 25)
        Y = np.arange(0, len(plot_groups))
        X, Y = np.meshgrid(X, Y)

        data_buffer = [] # hold the Z data sets


        for chan_grp in plot_groups:
            (group_name, group_info, fot, muf, hpf, image_buffer) = \
                self.data_file.get_group_data(chan_grp)
            # Copy the element at [0] to the tail of the array 
            #to 'wrap-around' the values at 24hrs.
            np.resize(muf, len(muf)+1)
            muf[-1] = muf[0]
            data_buffer.append(muf)

        Z = np.vstack((tuple(data_buffer)))

	# set up the titles and labels
        ax.set_xticks(np.arange(0, 25, 2))

        if (plot_max_freq==self.AUTOSCALE) :
            z_max = math.ceil(max(muf) / 5.0) * 5.0
            z_max = min(plot_max_freq, 30.0)
            z_max = max(plot_max_freq, 5.0)
        else :
            z_max = math.ceil(plot_max_freq / 5.0) * 5.0
        z_ticks = [2, 5]
        for z_tick_value in np.arange(10, z_max+1, 5):
            z_ticks.append(z_tick_value) 
        #ax.set_yticks(z_ticks)

	#label axes
        tz_sign = '+' if (time_zone >= 0) else ''
        self.x_label = ax.set_xlabel('Time (UTC%s%s)' % (tz_sign, time_zone))
        self.y_label = ax.set_ylabel('Group')
        self.z_label = ax.set_zlabel('Frequency (MHz)')

	#do the plot
        ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=color_map)
        canvas = FigureCanvasGTK3Agg(self.fig)
        canvas.show()
        Axes3D.mouse_init(ax)
        VOAPlotWindow('pythonProp - ' + self.image_defs['title'], \
                        canvas, \
                        parent)
        return
示例#12
0
    def plot_beam_xy(self,
                     write_files=False,
                     return_values=False,
                     threeD=False):
        """ Plot beam center coordinates and a histogram of distances from the median
        of beam center coordinates to each set of coordinates. Superpose a
        predicted mis-indexing shift by L +/- 1 (calculated for each axis).
    """

        # Calculate beam center coordinates and distances
        beamX = list(zip(*self.info.stats['beamX']['lst']))[2]
        beamY = list(zip(*self.info.stats['beamY']['lst']))[2]
        beamZ = list(zip(*self.info.stats['distance']['lst']))[2]
        beamXY = list(zip(beamX, beamY))

        beam_dist = [
            math.hypot(i[0] - np.median(beamX), i[1] - np.median(beamY))
            for i in beamXY
        ]
        beam_dist_std = np.std(beam_dist)
        beamXYdist = list(zip(beamX, beamY, beam_dist))

        # Separate out outliers
        outliers = [i for i in beamXYdist if i[2] > 2 * beam_dist_std]
        clean = [i for i in beamXYdist if i[2] <= 2 * beam_dist_std]
        cbeamX = [i[0] for i in clean]
        cbeamY = [j[1] for j in clean]
        obeamX = [i[0] for i in outliers]
        obeamY = [j[1] for j in outliers]

        wavelength = self.info.stats['wavelength']['median']
        det_distance = self.info.stats['distance']['median']
        a = np.median([i[0] for i in self.info.cluster_iterable])
        b = np.median([i[1] for i in self.info.cluster_iterable])
        c = np.median([i[2] for i in self.info.cluster_iterable])

        # Calculate predicted L +/- 1 misindexing distance for each cell edge
        aD = det_distance * math.tan(2 * math.asin(wavelength / (2 * a)))
        bD = det_distance * math.tan(2 * math.asin(wavelength / (2 * b)))
        cD = det_distance * math.tan(2 * math.asin(wavelength / (2 * c)))

        # Plot figure
        if threeD:
            self.figure.set_size_inches(w=8, h=8)
            ax1 = self.figure.add_subplot(111, projection='3d')
            Axes3D.mouse_init(ax1)
        else:
            self.figure.set_size_inches(w=9, h=13)
            gsp = gridspec.GridSpec(2, 1, height_ratios=[3, 1])
            ax1 = self.figure.add_subplot(gsp[0, :], aspect='equal')

        # Calculate axis limits of beam center scatter plot
        ax1_delta = np.ceil(np.max(beam_dist))
        xmax = round(np.median(beamX) + ax1_delta)
        xmin = round(np.median(beamX) - ax1_delta)
        ymax = round(np.median(beamY) + ax1_delta)
        ymin = round(np.median(beamY) - ax1_delta)
        zmax = round(np.ceil(self.info.stats['distance']['max']))
        zmin = round(np.floor(self.info.stats['distance']['min']))

        ax1.set_xlim(xmin, xmax)
        ax1.set_ylim(ymin, ymax)
        if threeD:
            ax1.set_zlim(zmin, zmax)

        # Plot beam center scatter plot
        if threeD:
            ax1.scatter(beamX, beamY, beamZ, alpha=1, s=20, c='grey', lw=1)
            ax1.plot([self.info.stats['beamX']['median']],
                     [self.info.stats['beamY']['median']],
                     [self.info.stats['distance']['median']],
                     markersize=8,
                     marker='o',
                     c='yellow',
                     lw=2)
        else:
            ax1.scatter(cbeamX, cbeamY, alpha=1, s=20, c='grey', lw=1)
            ax1.scatter(obeamX, obeamY, alpha=1, s=20, c='red', lw=1)
            ax1.plot(np.median(beamX),
                     np.median(beamY),
                     markersize=8,
                     marker='o',
                     c='yellow',
                     lw=2)

            # Plot projected mis-indexing limits for all three axes
            from matplotlib.patches import Circle
            circle_a = Circle((np.median(beamX), np.median(beamY)),
                              radius=aD,
                              color='r',
                              fill=False,
                              clip_on=True)
            circle_b = Circle((np.median(beamX), np.median(beamY)),
                              radius=bD,
                              color='g',
                              fill=False,
                              clip_on=True)
            circle_c = Circle((np.median(beamX), np.median(beamY)),
                              radius=cD,
                              color='b',
                              fill=False,
                              clip_on=True)
            ax1.add_patch(circle_a)
            ax1.add_patch(circle_b)
            ax1.add_patch(circle_c)

        # Set labels
        ax1.set_xlabel('BeamX (mm)', fontsize=15)
        ax1.set_ylabel('BeamY (mm)', fontsize=15)
        if threeD:
            ax1.set_zlabel('Distance (mm)', fontsize=15)
            ax1.set_title('Beam XYZ Coordinates')
        else:
            ax1.set_title('Beam XY Coordinates')

        if not threeD:
            # Plot histogram of distances to each beam center from median
            ax2 = self.figure.add_subplot(gsp[1, :])
            ax2_n, ax2_bins, ax2_patches = ax2.hist(beam_dist,
                                                    20,
                                                    facecolor='b',
                                                    alpha=0.75,
                                                    histtype='stepfilled')
            ax2_height = (np.max(ax2_n) + 9) // 10 * 10
            ax2.axis([0, np.max(beam_dist), 0, ax2_height])
            ax2.set_xlabel('Distance from median (mm)', fontsize=15)
            ax2.set_ylabel('No. of images', fontsize=15)

        self.draw(tight_layout=False)
示例#13
0
            else:
                return R5g(x, y, z) * gx4y4(x, y, z), '$5g_{x^4+y^4}$'


X = 5
Y = 5
Z = 5
n = 2
l = 1
m = 0

#fig = plt.figure(figsize=(5, 5), dpi=100)
fig = plt.figure()
axes = fig.add_subplot(111, projection='3d')
fig.suptitle('{}'.format(chooser(n, l, m)[1]))
Axes3D.mouse_init(axes)
x = np.linspace(-X, X, 20)
y = np.linspace(-Y, Y, 20)
z = np.linspace(-Z, Z, 20)
ans_x, ans_y, ans_z, ans_x2, ans_y2, ans_z2 = [], [], [], [], [], []
for i in x:
    for j in y:
        for k in z:
            dst = chooser(n, l, m, i, j, k)[0]**2
            if 0.001 < dst:
                dst = dst * 3
                ans_x.append(i)
                ans_y.append(j)
                ans_z.append(k)
                dsta = dst
                if dst > 1:
示例#14
0
    def __init__(self, data, parent):
        lat, lon, depth, rms = self.extract(data)
        # lat = np.zeros((len(data),1))
        # lon = np.zeros((len(data),1))
        # depth = np.zeros((len(data),1))
        #
        # for i in range(len(data)):
        #     lat[i] = data[i][1]
        #     lon[i] = data[i][2]
        #     depth[i] = data[i][3]

        self.fig = Figure()
        gs = GridSpec(1, 7)
        self.axes = self.fig.add_subplot(gs[0, 0:2], aspect='equal')
        self.axes.set_title('Location of Event')
        self.axes.set_ylabel('X')
        self.axes.set_xlabel('Y')
        self.axes.scatter(lat, lon, color='red')
        self.axes.grid()
        # g = data
        # data = data[:,:,int(np.fix(n*(len(Z)-1)/np.max(Z)))]

        #------------------------
        # m = Basemap(width=((lon.max()-lon.min())*111194.9266),height=((lat.max()-lat.min())*111194.9266),projection='aeqd', lat_0=lat.mean(), lon_0=lon.mean(), ax=self.axes)
        # fill background.
        # m.drawmapboundary(fill_color='aqua')
        # draw coasts and fill continents.
        # m.drawcoastlines(linewidth=0.5)
        # m.fillcontinents(color='coral', lake_color='aqua')
        # draw parallels.
        # parallels = np.arange(-90, 90, np.ceil((lat.max()-lat.min())/10))
        # parallels = np.arange(lat.min(), lat.max(), np.round((lat.max() - lat.min()) * 0.1, 5))
        # m.drawparallels(parallels, labels=[1, 0, 0, 0], fontsize=5)
        # draw meridians
        # meridians = np.arange(0, 360, np.ceil((lon.max()-lon.min())/10))
        # meridians = np.arange(lon.min(), lon.max(), np.round((lon.max() - lon.min()) * 0.1, 5))
        # m.drawmeridians(meridians, labels=[0, 0, 0, 1], fontsize=5)
        # draw a black dot at the center.
        # x,y = m(lon,lat)
        # m.plot(x, y, 'ro')
        #------------------------

        self.axes3 = self.fig.add_subplot(gs[0, -1])
        self.axes3.set_title('RMS Error (Hist)')
        self.axes3.set_ylabel('N Event')
        self.axes3.set_xlabel('RMS')
        self.axes3.hist(rms, bins='auto', color='blue')

        self.axes2 = self.fig.add_subplot(gs[0, 3:5], projection='3d')
        self.axes2.set_title('Location of Event')
        self.axes2.set_ylabel('X (km)')
        self.axes2.set_xlabel('Y (km)')
        self.axes2.set_zlabel('Depth (km)')
        # #

        FigureCanvas.__init__(self, self.fig)
        Axes3D.mouse_init(self.axes2)
        self.axes2.scatter(lat, lon, depth, color='red')
        # #
        self.axes2.set_zlim((np.max(depth), np.min(depth)))

        self.setParent(parent)
        FigureCanvas.setSizePolicy(self, QSizePolicy.Expanding,
                                   QSizePolicy.Expanding)
        FigureCanvas.updateGeometry(self)
示例#15
0
    self.pool.start(worker)

    
  def on_calc_done(self,task):
    self.canvas1.draw()
    self.progressBar.setValue(100)
    self.btnField.setEnabled(True)
                                  

    
if __name__ == '__main__':

  fig = Figure()
  ax = fig.add_subplot(111, projection='3d')
  #fig.tight_layout()
  Axes3D.mouse_init(ax)

  fig1 = Figure()
  ax1 = fig1.add_subplot(111)
  #fig1.tight_layout()

  app = QtGui.QApplication(sys.argv)
  app.setStyle(QtGui.QStyleFactory.create('Fusion'))
  main = Main()
  main.addmpl(fig)
  main.addfield(fig1)
  main.show()
  sys.exit(app.exec_())


# In Qt 5.2, we can do