示例#1
0
def iv_P_norm_expm(P_sqrt_T, M1, A, M2, tau):
    """
    Bound on P-ellipsoid norm of (M1 (expm(A*t) - I) M2)  for |t| < tau

    using the theorem in arXiv:1911.02537, section "Norm bounding of summands"

    @param P_sqrt_T: see iv_P_norm()
    """
    P_sqrt_T = iv.matrix(P_sqrt_T)
    M1 = iv.matrix(M1)
    A = iv.matrix(A)
    M2 = iv.matrix(M2)
    # coerce tau to maximum
    tau = abs(iv.mpf(tau)).b
    # P-ellipsoid norms
    M1_p = iv_P_norm(M=M1, P_sqrt_T=P_sqrt_T)
    M2_p = iv_P_norm(M=M2, P_sqrt_T=P_sqrt_T)
    A_p = iv_P_norm(M=A, P_sqrt_T=P_sqrt_T)
    # A_pow[i] = A ** i
    A_pow = _iv_matrix_powers(A)
    # Work around bug in mpmath, see comment in iv_P_norm()
    zero = iv.matrix(mp.zeros(len(A)))
    M1 = zero + M1
    # terms from [arXiv:1911.02537]
    M1_Ai_M2_p = lambda i: iv_P_norm(M=M1 @ A_pow[i] @ M2, P_sqrt_T=P_sqrt_T)
    gamma = lambda i: 1 / math.factorial(i) * (M1_Ai_M2_p(i) - M1_p * A_p ** i * M2_p)
    max_norm = sum([gamma(i) * (tau ** i) for i in range(1, IV_NORM_EVAL_ORDER + 1)]) + M1_p * M2_p * (iv.exp(A_p * tau) - 1)
    # the lower bound is always 0 (for t=0)
    return mp.mpi([0, max_norm.b])
示例#2
0
def iv_P_norm(M, P_sqrt_T):
    """
    interval bound on P-ellipsoid norm of M, defined as max_{x in R^n} sqrt(((M x).T P (M x)) / (x.T P x))

    with P_sqrt_T.T @ P_sqrt_T = P,   where x.T P x typically is a Lyapunov function
    """
    P_sqrt_T = iv.matrix(P_sqrt_T)
    M = iv.matrix(M)
    # P_norm(M) = spectral norm (maximum singular value) of P_sqrt_T A P_sqrt_T**(-1)
    return iv_spectral_norm(iv.matrix(P_sqrt_T) @ M @ iv_matrix_inv(iv.matrix(P_sqrt_T)))
 def example_matrices(self, include_singular=True, random=100):
     examples = [
         iv.matrix([[1, 2], [4, 5]]) + iv.mpf([-1, +1]) * mp.mpf(1e-10),
         iv.eye(2) * 0.5,
         iv.diag([1, 1e-10]),
         iv.eye(2) * 1e-302
     ]
     for n in [1, 4, 17]:
         for i in range(random // n):
             examples.append(iv.matrix(mp.randmatrix(n)))
     if include_singular:
         examples.append(iv.matrix(mp.zeros(4)))
         examples.append(iv.diag([1, 1e-200]))
     return examples
示例#4
0
def iv_spectral_norm(M):
    """
    Good interval bound of spectral norm of a (interval) matrix

    Theorem 3.2 from

    Siegfried M. Rump. “Verified bounds for singular values, in particular for the
    spectral norm of a matrix and its inverse”. In: BIT Numerical Mathematics 51.2
    (Nov. 2010), pp. 367–384. DOI : 10.1007/s10543-010-0294-0.
    """
    M = iv.matrix(M)
    # imprecise SVD of M (no requirement on precision)
    # _, _, V_T = mp.svd(iv_matrix_mid_to_mp(M)) # <-- configurable precision
    _, _, V_T = scipy.linalg.svd(iv_matrix_mid_to_numpy_ndarray(M)) # <-- faster
    # in [Rump 2010], SVD is defined as M = U @ S @ V.T,
    # in mpmath it is M = U @ S @ V (not transposed) for U,S,V=svd(M)
    # in scipy it is effectively the same as in mpmath, M = U @ S @ Vh for U,S,Vh = svd(M)
    V = numpy_ndarray_to_mp_matrix(V_T).T
    # now, everything is named as in [Rump2010], except that here, A is called M.
    # all following computations are interval bounds
    V = iv.matrix(V)
    B = M @ V
    BTB = B.T @ B
    # split BTB such that DE = diagonal D + rest E
    D = BTB @ 0
    E = BTB @ 0
    for i in range(BTB.rows):
        for j in range(BTB.cols):
            if i == j:
                D[i,j] = BTB[i,j]
            else:
                E[i,j] = BTB[i,j]
    # upper bound of spectral norm of I - V.T @ V
    alpha = iv_spectral_norm_rough(iv.eye(len(M)) - V.T @ V)
    # upper bound of spectral norm of E
    epsilon = iv_spectral_norm_rough(E)
    # maximum of D[i,i]  (which are always >= 0)
    d_max = iv.norm(D, mp.inf)
    if alpha.b >= 1:
        # this shouldn't happen - even an imprecise SVD will roughly have V.T @ V = I.
        raise scipy.linalg.LinAlgError("Something's numerically wrong - the singular vectors are far from orthonormal")
        # should this ever happen in reality, a valid return value would be:
        # return iv.mpf([0, mp.inf])
    try:
        lower_bound = iv.sqrt((d_max - epsilon) / (1 + alpha)).a
    except mp.libmp.libmpf.ComplexResult:
        lower_bound=0;
    # note that d_max, epsilon,alpha are intervals, so everything in the following computation is interval arithmetic
    return iv.mpf([lower_bound, iv.sqrt((d_max + epsilon) / (1 - alpha)).b])
 def test_P_synthesis(self):
     """
     Combined test:
     For A with eigenvalues inside the unit disk,
     generate P_sqrt_T such that P_norm(A, P_sqrt_T) < 1.
     """
     for c in [0.001234, 1, -2, 42.123]:
         eigenvalue = 0.99
         # rotation matrix with eigenvalue magnitude 0.99,
         # transformed with factor c (c=1: invariant set is a circle, otherwise: invariant set is elliptical)
         A = iv.matrix([[0., -c * eigenvalue], [eigenvalue / c, 0]])
         # Note that A must be well-conditioned, otherwise this test will fail
         # compute eigenvalues of A
         eigv_A, _ = mp.eig(iv_matrix_mid_as_mp(A))
         self.assertAlmostEqual(eigenvalue, max([abs(i) for i in eigv_A]),
                                3)
         P_sqrt_T = approx_P_sqrt_T(A)
         P_norm_iv = iv_P_norm(A, P_sqrt_T)
         self.check_P_norm(A, P_sqrt_T)
         # P_norm_iv must be at least 0.99, but should not be much larger than that
         self.assertLess(P_norm_iv, 1)
         self.assertGreater(P_norm_iv.b, 0.99)
         self.check_P_norm_expm(P_sqrt_T,
                                M1=mp.randmatrix(2),
                                A=A,
                                M2=mp.randmatrix(2),
                                tau=0.01)
def iv_matrix_inv(M):
    """
    interval matrix inverse, with caching

    NOTE: If you change mpmath's resolution after the first call to this function,
    you may get cached old output with the old resolution.
    """
    assert isinstance(M, (mp.matrix, iv.matrix))
    M = iv.matrix(M)
    return M**(-1)
示例#7
0
def _iv_matrix_powers(A):
    """
    return the first IV_NORM_EVAL_ORDER+1 powers of A:
    [I, A, A**2, ..., A**(IV_NORM_EVAL_ORDER)]
    """
    assert isinstance(A, iv.matrix)
    A = iv.matrix(A) + mp.mpi(0,0) # workaround bug
    A_pow = [iv.eye(len(A))]
    for i in range(IV_NORM_EVAL_ORDER+1):
        A_pow.append(A @ A_pow[-1])
    return A_pow
def example_C():
    """
    DigitalControlLoop and P_sqrt_T value for example C.
    """
    s = examples.example_C_quadrotor_attitude_one_axis()
    # P_sqrt_T = analyze(s, datatype=np)['P_sqrt_T']
    P_sqrt_T = iv.matrix(
        [[
            '0.0019244615174829', '0.010762303718393', '-0.000842841208611818',
            '-0.000546543030195919', '0.337150563056583'
        ],
         [
             '0.0', '0.0145387640958695', '0.000181643285522379',
             '0.000217863576839351', '0.414793996245936'
         ],
         [
             '0.0', '0.0', '0.443015131922611', '-0.443014979405948',
             '0.000266278043438505'
         ], ['0.0', '0.0', '0.0', '0.000392820699869412', '0.432006259021524'],
         ['0.0', '0.0', '0.0', '0.0', '0.662735066069117']])
    return (s, P_sqrt_T)
示例#9
0
 def convert(M):
     if isinstance(M, mpmath.matrix):
         return iv.matrix(M)
     else:
         return iv.matrix(M.tolist())
 def test_matrix_abs_max(self):
     A = iv.matrix([[1, 2], [4, 5]]) + iv.mpf([-1, +1]) * mp.mpf(1e-10)
     assert mp.matrix([[1, 2], [4, 5]]) + mp.mpf(1e-10) == matrix_abs_max(A)
     assert mp.matrix([[1, 2], [4, 5]
                       ]) + mp.mpf(1e-10) == matrix_abs_max(-A)