示例#1
0
文件: evalf.py 项目: arghdos/sympy
def _create_evalf_table():
    global evalf_table
    from sympy.functions.combinatorial.numbers import bernoulli
    from sympy.concrete.products import Product
    from sympy.concrete.summations import Sum
    from sympy.core.add import Add
    from sympy.core.mul import Mul
    from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero
    from sympy.core.power import Pow
    from sympy.core.symbol import Dummy, Symbol
    from sympy.functions.elementary.complexes import Abs, im, re
    from sympy.functions.elementary.exponential import exp, log
    from sympy.functions.elementary.integers import ceiling, floor
    from sympy.functions.elementary.piecewise import Piecewise
    from sympy.functions.elementary.trigonometric import atan, cos, sin
    from sympy.integrals.integrals import Integral
    evalf_table = {
        Symbol: evalf_symbol,
        Dummy: evalf_symbol,
        Float: lambda x, prec, options: (x._mpf_, None, prec, None),
        Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None),
        Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None),
        Zero: lambda x, prec, options: (None, None, prec, None),
        One: lambda x, prec, options: (fone, None, prec, None),
        Half: lambda x, prec, options: (fhalf, None, prec, None),
        Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
        Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
        ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
        NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
        NaN: lambda x, prec, options: (fnan, None, prec, None),

        exp: lambda x, prec, options: evalf_pow(
            Pow(S.Exp1, x.args[0], evaluate=False), prec, options),

        cos: evalf_trig,
        sin: evalf_trig,

        Add: evalf_add,
        Mul: evalf_mul,
        Pow: evalf_pow,

        log: evalf_log,
        atan: evalf_atan,
        Abs: evalf_abs,

        re: evalf_re,
        im: evalf_im,
        floor: evalf_floor,
        ceiling: evalf_ceiling,

        Integral: evalf_integral,
        Sum: evalf_sum,
        Product: evalf_prod,
        Piecewise: evalf_piecewise,

        bernoulli: evalf_bernoulli,
    }
示例#2
0
def _create_evalf_table():
    global evalf_table
    from sympy.functions.combinatorial.numbers import bernoulli
    from sympy.concrete.products import Product
    from sympy.concrete.summations import Sum
    from sympy.core.add import Add
    from sympy.core.mul import Mul
    from sympy.core.numbers import Exp1, Float, Half, ImaginaryUnit, Integer, NaN, NegativeOne, One, Pi, Rational, Zero
    from sympy.core.power import Pow
    from sympy.core.symbol import Dummy, Symbol
    from sympy.functions.elementary.complexes import Abs, im, re
    from sympy.functions.elementary.exponential import exp, log
    from sympy.functions.elementary.integers import ceiling, floor
    from sympy.functions.elementary.piecewise import Piecewise
    from sympy.functions.elementary.trigonometric import atan, cos, sin
    from sympy.integrals.integrals import Integral
    evalf_table = {
        Symbol: evalf_symbol,
        Dummy: evalf_symbol,
        Float: lambda x, prec, options: (x._mpf_, None, prec, None),
        Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None),
        Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None),
        Zero: lambda x, prec, options: (None, None, prec, None),
        One: lambda x, prec, options: (fone, None, prec, None),
        Half: lambda x, prec, options: (fhalf, None, prec, None),
        Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
        Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
        ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
        NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
        NaN : lambda x, prec, options: (fnan, None, prec, None),

        exp: lambda x, prec, options: evalf_pow(
            Pow(S.Exp1, x.args[0], evaluate=False), prec, options),

        cos: evalf_trig,
        sin: evalf_trig,

        Add: evalf_add,
        Mul: evalf_mul,
        Pow: evalf_pow,

        log: evalf_log,
        atan: evalf_atan,
        Abs: evalf_abs,

        re: evalf_re,
        im: evalf_im,
        floor: evalf_floor,
        ceiling: evalf_ceiling,

        Integral: evalf_integral,
        Sum: evalf_sum,
        Product: evalf_prod,
        Piecewise: evalf_piecewise,

        bernoulli: evalf_bernoulli,
    }
示例#3
0
def _create_evalf_table():
    global evalf_table
    from ..functions.combinatorial.numbers import bernoulli
    from ..concrete.products import Product
    from ..concrete.summations import Sum
    from .add import Add
    from .mul import Mul
    from .numbers import (Exp1, Float, Half, ImaginaryUnit,
                          Integer, NaN, NegativeOne, One, Pi,
                          Rational, Zero)
    from .power import Pow
    from .symbol import Dummy, Symbol
    from ..functions.elementary.complexes import Abs, im, re
    from ..functions.elementary.exponential import log
    from ..functions.elementary.piecewise import Piecewise
    from ..functions.elementary.trigonometric import atan, cos, sin
    from ..integrals.integrals import Integral
    evalf_table = {
        Symbol: evalf_symbol,
        Dummy: evalf_symbol,
        Float: lambda x, prec, options: (x._mpf_, None, prec if prec <= x._prec else x._prec, None),
        Rational: lambda x, prec, options: (from_rational(x.numerator, x.denominator, prec),
                                            None, prec, None),
        Integer: lambda x, prec, options: (from_int(x.numerator, prec),
                                           None, prec, None),
        Zero: lambda x, prec, options: (None, None, prec, None),
        One: lambda x, prec, options: (fone, None, prec, None),
        Half: lambda x, prec, options: (fhalf, None, prec, None),
        Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
        Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
        ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
        NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
        NaN: lambda x, prec, options: (fnan, None, prec, None),

        cos: evalf_trig,
        sin: evalf_trig,

        Add: evalf_add,
        Mul: evalf_mul,
        Pow: evalf_pow,

        log: evalf_log,
        atan: evalf_atan,
        Abs: evalf_abs,

        re: evalf_re,
        im: evalf_im,

        Integral: evalf_integral,
        Sum: evalf_sum,
        Product: evalf_prod,
        Piecewise: evalf_piecewise,

        bernoulli: evalf_bernoulli,
    }
示例#4
0
文件: evalf.py 项目: Blendify/diofant
def _create_evalf_table():
    global evalf_table
    from ..functions.combinatorial.numbers import bernoulli
    from ..concrete.products import Product
    from ..concrete.summations import Sum
    from .add import Add
    from .mul import Mul
    from .numbers import (Exp1, Float, Half, ImaginaryUnit,
                          Integer, NaN, NegativeOne, One, Pi,
                          Rational, Zero)
    from .power import Pow
    from .symbol import Dummy, Symbol
    from ..functions.elementary.complexes import Abs, im, re
    from ..functions.elementary.exponential import log
    from ..functions.elementary.piecewise import Piecewise
    from ..functions.elementary.trigonometric import atan, cos, sin
    from ..integrals.integrals import Integral
    evalf_table = {
        Symbol: evalf_symbol,
        Dummy: evalf_symbol,
        Float: lambda x, prec, options: (x._mpf_, None, prec if prec <= x._prec else x._prec, None),
        Rational: lambda x, prec, options: (from_rational(x.numerator, x.denominator, prec),
                                            None, prec, None),
        Integer: lambda x, prec, options: (from_int(x.numerator, prec),
                                           None, prec, None),
        Zero: lambda x, prec, options: (None, None, prec, None),
        One: lambda x, prec, options: (fone, None, prec, None),
        Half: lambda x, prec, options: (fhalf, None, prec, None),
        Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
        Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
        ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
        NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
        NaN: lambda x, prec, options: (fnan, None, prec, None),

        cos: evalf_trig,
        sin: evalf_trig,

        Add: evalf_add,
        Mul: evalf_mul,
        Pow: evalf_pow,

        log: evalf_log,
        atan: evalf_atan,
        Abs: evalf_abs,

        re: evalf_re,
        im: evalf_im,

        Integral: evalf_integral,
        Sum: evalf_sum,
        Product: evalf_prod,
        Piecewise: evalf_piecewise,

        bernoulli: evalf_bernoulli,
    }
示例#5
0
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.


    The correctness of this implementation has been tested through 10**10.

    Examples
    ========

    >>> from sympy.ntheory import npartitions
    >>> npartitions(25)
    1958

    References
    ==========

    .. [1] http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    if '_factor' not in globals():
        _pre()
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((
        math.pi*(2*n/3.)**0.5 -
        math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits*1.1 + 100)
    s = fzero
    M = max(6, int(0.24*n**0.5 + 4))
    if M > 10**5:
        raise ValueError("Input too big") # Corresponds to n > 1.7e11
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude.
        # Dynamically reducing the precision greatly improves
        # performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
示例#6
0
def npartitions(n, verbose=False):
    """
    Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula [1]_.


    The correctness of this implementation has been tested through 10**10.

    Examples
    ========

    >>> from sympy.ntheory import npartitions
    >>> npartitions(25)
    1958

    References
    ==========

    .. [1] http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    if '_factor' not in globals():
        _pre()
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((
        math.pi*(2*n/3.)**0.5 -
        math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits * 1.1 + 100)
    s = fzero
    M = max(6, int(0.24 * n**0.5 + 4))
    if M > 10**5:
        raise ValueError("Input too big")  # Corresponds to n > 1.7e11
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        if verbose:
            print("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude.
        # Dynamically reducing the precision greatly improves
        # performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
示例#7
0
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
示例#8
0
def _d(n, j, prec, sq23pi, sqrt8):
    """
    Compute the sinh term in the outer sum of the HRR formula.
    The constants sqrt(2/3*pi) and sqrt(8) must be precomputed.
    """
    j = from_int(j)
    pi = mpf_pi(prec)
    a = mpf_div(sq23pi, j, prec)
    b = mpf_sub(from_int(n), from_rational(1, 24, prec), prec)
    c = mpf_sqrt(b, prec)
    ch, sh = mpf_cosh_sinh(mpf_mul(a, c), prec)
    D = mpf_div(mpf_sqrt(j, prec), mpf_mul(mpf_mul(sqrt8, b), pi), prec)
    E = mpf_sub(mpf_mul(a, ch), mpf_div(sh, c, prec), prec)
    return mpf_mul(D, E)
示例#9
0
def npartitions(n):
    """Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula.

    The correctness of this implementation has been tested for 10**n
    up to n = 8.

    Examples
    ========

    >>> npartitions(25)
    1958

    References
    ==========

    * https://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits * 1.1 + 100)
    s = fzero
    M = max(6, int(0.24 * n**0.5 + 4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        debug('step', q, 'of', M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))
示例#10
0
文件: evalf.py 项目: yang603/sympy
def _create_evalf_table():
    global evalf_table
    evalf_table = {
        C.Symbol: evalf_symbol,
        C.Dummy: evalf_symbol,
        C.Float: lambda x, prec, options: (x._mpf_, None, prec, None),
        C.Rational: lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None),
        C.Integer: lambda x, prec, options: (from_int(x.p, prec), None, prec, None),
        C.Zero: lambda x, prec, options: (None, None, prec, None),
        C.One: lambda x, prec, options: (fone, None, prec, None),
        C.Half: lambda x, prec, options: (fhalf, None, prec, None),
        C.Pi: lambda x, prec, options: (mpf_pi(prec), None, prec, None),
        C.Exp1: lambda x, prec, options: (mpf_e(prec), None, prec, None),
        C.ImaginaryUnit: lambda x, prec, options: (None, fone, None, prec),
        C.NegativeOne: lambda x, prec, options: (fnone, None, prec, None),
        C.NaN : lambda x, prec, options: (fnan, None, prec, None),

        C.exp: lambda x, prec, options: evalf_pow(C.Pow(S.Exp1, x.args[0],
        evaluate=False), prec, options),

        C.cos: evalf_trig,
        C.sin: evalf_trig,

        C.Add: evalf_add,
        C.Mul: evalf_mul,
        C.Pow: evalf_pow,

        C.log: evalf_log,
        C.atan: evalf_atan,
        C.Abs: evalf_abs,

        C.re: evalf_re,
        C.im: evalf_im,
        C.floor: evalf_floor,
        C.ceiling: evalf_ceiling,

        C.Integral: evalf_integral,
        C.Sum: evalf_sum,
        C.Product: evalf_prod,
        C.Piecewise: evalf_piecewise,

        C.bernoulli: evalf_bernoulli,
    }
示例#11
0
def npartitions(n):
    """Calculate the partition function P(n), i.e. the number of ways that
    n can be written as a sum of positive integers.

    P(n) is computed using the Hardy-Ramanujan-Rademacher formula.

    The correctness of this implementation has been tested for 10**n
    up to n = 8.

    Examples
    ========

    >>> npartitions(25)
    1958

    References
    ==========

    * http://mathworld.wolfram.com/PartitionFunctionP.html

    """
    n = int(n)
    if n < 0:
        return 0
    if n <= 5:
        return [1, 1, 2, 3, 5, 7][n]
    # Estimate number of bits in p(n). This formula could be tidied
    pbits = int((math.pi*(2*n/3.)**0.5 - math.log(4*n))/math.log(10) + 1) * \
        math.log(10, 2)
    prec = p = int(pbits*1.1 + 100)
    s = fzero
    M = max(6, int(0.24*n**0.5 + 4))
    sq23pi = mpf_mul(mpf_sqrt(from_rational(2, 3, p), p), mpf_pi(p), p)
    sqrt8 = mpf_sqrt(from_int(8), p)
    for q in range(1, M):
        a = _a(n, q, p)
        d = _d(n, q, p, sq23pi, sqrt8)
        s = mpf_add(s, mpf_mul(a, d), prec)
        debug("step", q, "of", M, to_str(a, 10), to_str(d, 10))
        # On average, the terms decrease rapidly in magnitude. Dynamically
        # reducing the precision greatly improves performance.
        p = bitcount(abs(to_int(d))) + 50
    return int(to_int(mpf_add(s, fhalf, prec)))