def abeff_trianglebound(N, y, t, cond): sigma1 = 0.5 * (1 + y) sum1, sum2, sum3, sum5 = [0.0 for _ in range(4)] b1 = 1 a1 = mp.power(N, -0.4) xN = 4 * mp.pi() * N * N - mp.pi() * t / 4.0 xNp1 = 4 * mp.pi() * (N + 1) * (N + 1) - mp.pi() * t / 4.0 delta = mp.pi() * y / (2 * (xN - 6 - (14 + 2 * y) / mp.pi())) + 2 * y * ( 7 + y) * mp.log(abs(1 + y + 1j * xNp1) / (4 * mp.pi)) / (xN * xN) expdelta = mp.exp(delta) for n in range(1, 30 * N + 1): nf = float(n) denom = mp.power(nf, sigma1 + (t / 4.0) * mp.log(N * N)) common1 = mp.exp((t / 4.0) * mp.power(mp.log(nf), 2)) common2 = common1 * mp.power(nf / N, y) * expdelta * mp.exp( t * y * mp.log(n) / (2 * (xN - 6))) bn, bn2, bn3, bn5 = [ common1 * abs(cond[n][2 * i - 1]) for i in range(1, 5) ] an, an2, an3, an5 = [ common2 * abs(cond[n][2 * i]) for i in range(1, 5) ] sum1 += (bn + an) / denom sum2 += (bn2 + an2) / denom sum3 += (bn3 + an3) / denom sum5 += (bn5 + an5) / denom return [N, expdelta] + [2 - j for j in [sum1, sum2, sum3, sum5]]
def small_xi(n, y, cancel_keff=False): if cancel_keff: keff_factor = mp.mpf(1) else: keff_factor = (2 - mp.powm1(y, 2)) return mp.power(-1, n) * keff_factor * (1 + n * y) / ( mp.mpf(2) * mp.power(y, 3)) * mp.sqrt(mp.power((1 - y) / (1 + y), n))
def abeff_lemmabound(N, y, t, cond): sigma1 = 0.5 * (1 + y) sum1, sum2, sum3, sum5 = [0.0 for _ in range(4)] b1 = 1 a1 = mp.power(N, -0.4) xN = 4 * mp.pi() * N * N - mp.pi() * t / 4.0 xNp1 = 4 * mp.pi() * (N + 1) * (N + 1) - mp.pi() * t / 4.0 delta = mp.pi() * y / (2 * (xN - 6 - (14 + 2 * y) / mp.pi())) + 2 * y * ( 7 + y) * mp.log(abs(1 + y + 1j * xNp1) / (4 * mp.pi)) / (xN * xN) expdelta = mp.exp(delta) for n in range(2, 30 * N + 1): nf = float(n) denom = mp.power(nf, sigma1 + (t / 4.0) * mp.log(N * N)) #print([cond[n][i] for i in range(1,9)]) common1 = mp.exp((t / 4.0) * mp.power(mp.log(nf), 2)) common2 = common1 * mp.power(nf / N, y) common3 = expdelta * (mp.exp(t * y * mp.log(n) / (2 * (xN - 6))) - 1) bn, bn2, bn3, bn5 = [common1 * cond[n][2 * i - 1] for i in range(1, 5)] an, an2, an3, an5 = [common2 * cond[n][2 * i] for i in range(1, 5)] en, en2, en3, en5 = an * common3, an2 * common3, an3 * common3, an5 * common3 sum1 += (en + max( (1 - a1) * abs(bn + an) / (1 + a1), abs(bn - an))) / denom sum2 += (en2 + max( (1 - a1) * abs(bn2 + an2) / (1 + a1), abs(bn2 - an2))) / denom sum3 += (en3 + max( (1 - a1) * abs(bn3 + an3) / (1 + a1), abs(bn3 - an3))) / denom sum5 += (en5 + max( (1 - a1) * abs(bn5 + an5) / (1 + a1), abs(bn5 - an5))) / denom return [N, expdelta] + [1 - a1 - j for j in [sum1, sum2, sum3, sum5]]
def dipole_moment(charge, a): ''' Purpose: to calculate the value of dipole moment Return: returns dipole moment calculated ''' # Editing Value of charge as per the unit if charge[1] in ('Coulomb', 'C'): charge = charge[0] elif charge[1] in ('microCoulomb', 'uC'): charge = mp.fmul(charge[0], 10**(-6)) elif charge[1] in ('milliCoulomb', 'mC'): charge = mp.fmul(charge[0], 10**(-3)) elif charge[1] in ('electronCharge', 'eC'): charge = mp.fmul(charge[0], mp.fmul(1.60217646, mp.fmul(10, -19))) # 1.60217646⋅10-19 elif charge[1] in ('nanoCoulomb', 'nC'): charge = mp.fmul(charge[0], mp.power(10, -10)) elif charge[1] in ('picoCoulomb', 'pC'): charge = mp.fmul(charge[0], mp.power(10, -12)) # Editing value of a as per the unit if a[1].lower() in ('meters', 'm'): a = a[0] elif a[1].lower() in ('centimeters', 'cm'): a = mp.fmul(a[0], 10**(-2)) elif a[1].lower() in ('millimeters', 'mm'): a = mp.fmul(a[0], 10**(-3)) elif a[1].lower() in ('angstroms', 'a', 'A'): a = mp.fmul(a[0], 10**(-10)) return mp.fmul(charge, mp.fmul(2, a))
def Ht_AFE_A(z, t): """ This is the much more accurate approx functional eqn posted by Terry at https://terrytao.wordpress.com/2018/02/02/polymath15-second-thread-generalising-the-riemann-siegel-approximate-functional-equation/#comment-492182 :param z: point at which H_t is computed :param t: the "time" parameter :return: the A part in Ht """ z, t = mp.mpc(z), mp.mpc(t) s = (1 + 1j * z.real - z.imag) / 2 tau = mp.sqrt(s.imag / (2 * mp.pi())) N = int(tau) A_pre = (1/16) * s * (s-1) \ * mp.power(mp.pi(), -1*s/2) * mp.gamma(s/2) A_sum = 0.0 for n in range(1, N + 1): if t.real > 0: A_sum += mp.exp( (t / 16) * mp.power(mp.log( (s + 4) / (2 * mp.pi() * n * n)), 2)) / mp.power(n, s) else: A_sum += 1 / mp.power(n, s) return A_pre * A_sum
def Ht_AFE_B(z, t): """ This is the much more accurate approx functional eqn posted by Terry at https://terrytao.wordpress.com/2018/02/02/polymath15-second-thread-generalising-the-riemann-siegel-approximate-functional-equation/#comment-492182 :param z: point at which H_t is computed :param t: the "time" parameter :return: the B part in Ht """ z, t = mp.mpc(z), mp.mpc(t) s = (1 + 1j * z.real - z.imag) / 2 tau = mp.sqrt(s.imag / (2 * mp.pi())) M = int(tau) B_pre = (1 / 16.0) * s * (s - 1) * mp.power(mp.pi(), 0.5 * (s - 1)) * mp.gamma(0.5 * (1 - s)) B_sum = 0.0 for m in range(1, M + 1): if t.real > 0: B_sum += mp.exp( (t / 16.0) * mp.power(mp.log( (5 - s) / (2 * mp.pi() * m * m)), 2)) / mp.power(m, 1 - s) else: B_sum += 1 / mp.power(m, 1 - s) return B_pre * B_sum
def _SolveForT0(A, B, t, tInterval): """There are four solutions to the equation (including complex ones). Here we use x instead of t0 for convenience. """ """ SolveQuartic(2*A, -4*A*T + 2*B, 3*A*T**2 - 3*B*T, -A*T**3 + 3*B*T**2, -B*T**3) """ if (Abs(A) < epsilon): def f(x): return Mul(number('2'), B)*x*x*x - Prod([number('3'), B, t])*x*x + Prod([number('3'), B, t, t])*x - Mul(B, mp.power(t, 3)) sols = [mp.findroot(f, x0=0.5*t)] else: sols = SolveQuartic(Add(A, A), Add(Prod([number('-4'), A, t]), Mul(number('2'), B)), Sub(Prod([number('3'), A, t, t]), Prod([number('3'), B, t])), Sub(Prod([number('3'), B, t, t]), Mul(A, mp.power(t, 3))), Neg(Mul(B, mp.power(t, 3)))) realSols = [sol for sol in sols if type(sol) is mp.mpf and sol in tInterval] if len(realSols) > 1: # I think this should not happen. We should either have one or no solution. raise NotImplementedError elif len(realSols) == 0: return None else: return realSols[0]
def v(sigma, t, a0, ksumcache): if (sigma >= 0): return 1 + 0.4 * mp.power(9, sigma) / a0 + 0.346 * mp.power( 2, 3 * sigma / 2.0) / (a0**2) if (sigma < 0): K = int(mp.floor(-1 * sigma) + 3) return 1 + mp.power(0.9, mp.ceil(-1 * sigma)) * ksumcache[K]
def abtoyx_e3(z, t): x = z.real xdash = x + mp.pi() * t / 4.0 y = z.imag sigma1, sigma2 = 0.5 * (1 + y), 0.5 * (1 - y) s1, s2 = sigma1 + 0.5j * xdash, sigma2 + 0.5j * xdash N = int(mp.sqrt(0.25 * x / mp.pi())) sum1_L, sum1_R = 0.0, 0.0 factor2 = 1 - 1 / mp.power(2.0, s1 + (t / 4.0) * mp.log(N * N / 2.0)) factor3 = 1 - 1 / mp.power(3.0, s1 + (t / 4.0) * mp.log(N * N / 2.0)) factorN = mp.power(N, -0.4) for n in range(1, N + 1): n = float(n) sum1_L += mp.power(n, -1 * s1 - (t / 4.0) * mp.log(N * N / n)) sum1_R += mp.power(n, -1 * s2 - (t / 4.0) * mp.log(N * N / n)) sum1_R = sum1_R * factorN sum12_L, sum12_R = sum1_L * factor2, sum1_R * factor2 sum123_L, sum123_R = sum12_L * factor3, sum12_R * factor3 absum1_L, absum1_R, absum12_L, absum12_R, absum123_L, absum123_R = abs( sum1_L), abs(sum1_R), abs(sum12_L), abs(sum12_R), abs(sum123_L), abs( sum123_R) abdiff1, abdiff12, abdiff123 = absum1_L - absum1_R, absum12_L - absum12_R, absum123_L - absum123_R return [ sum1_L, sum1_R, absum1_L, absum1_R, abdiff1, sum12_L, sum12_R, absum12_L, absum12_R, abdiff12, sum123_L, sum123_R, absum123_L, absum123_R, abdiff123 ]
def _SolveForT0(A, B, t, tInterval): """There are four solutions to the equation (including complex ones). Here we use x instead of t0 for convenience. """ """ SolveQuartic(2*A, -4*A*T + 2*B, 3*A*T**2 - 3*B*T, -A*T**3 + 3*B*T**2, -B*T**3) """ if (Abs(A) < epsilon): def f(x): return Mul(number('2'), B) * x * x * x - Prod( [number('3'), B, t]) * x * x + Prod( [number('3'), B, t, t]) * x - Mul(B, mp.power(t, 3)) sols = [mp.findroot(f, x0=0.5 * t)] else: sols = SolveQuartic( Add(A, A), Add(Prod([number('-4'), A, t]), Mul(number('2'), B)), Sub(Prod([number('3'), A, t, t]), Prod([number('3'), B, t])), Sub(Prod([number('3'), B, t, t]), Mul(A, mp.power(t, 3))), Neg(Mul(B, mp.power(t, 3)))) realSols = [ sol for sol in sols if type(sol) is mp.mpf and sol in tInterval ] if len(realSols) > 1: # I think this should not happen. We should either have one or no solution. raise NotImplementedError elif len(realSols) == 0: return None else: return realSols[0]
def F0(s): # works only for x > 14 approx due to the sqrt(x/4PI) factor term1 = mp.power(PI,-1*s/2)*mp.gamma((s+4)/2) x=2*s.imag N = int(mp.sqrt(x/(4*PI))) running_sum=0 for n in range(1,N+1): running_sum += 1/mp.power(n,s) return term1*running_sum
def RSZ_upto_c1(x): x = mp.mpf(x.real) tau = mp.sqrt(x/(2*PI)) N = int(tau.real) p = tau-N running_sum=0 for n in range(1,N+1): running_sum += mp.cos(RStheta(x) - x*mp.log(n))/mp.sqrt(n) return (2*running_sum + mp.power(-1,N-1)*mp.power(tau,-0.5)*(c0(p) - (1/tau)*c1(p))).real
def Ft(s,t): # works only for x > 14 approx due to the sqrt(x/4PI) factor term1 = mp.power(PI,-1*s/2)*mp.gamma((s+4)/2) x=2*s.imag N = int(mp.sqrt(x/(4*PI))) running_sum=0 for n in range(1,N+1): running_sum += mp.exp((t/16)*mp.power(mp.log((s+4)/(2*PI*n*n)),2))/mp.power(n,s) # main eqn return term1*running_sum
def phi_decay(u,n_max=100): running_sum=0 u=mp.mpc(u) for n in range(1,n_max+1): term1=2*PI_sq*mp.power(n,4)*mp.exp(9*u) - 3*PI*mp.power(n,2)*mp.exp(5*u) term2=mp.exp(-1*PI*mp.power(n,2)*mp.exp(4*u)) running_sum += term1*term2 #print n,term1, term2, running_sum return running_sum
def F0(s): # works only for x > 14 approx due to the sqrt(x/4PI) factor term1 = mp.power(mp.pi(), -0.5 * s) * mp.gamma(0.5 * (s + 4)) x = 2 * s.imag N = int(mp.sqrt(x / (4 * mp.pi()))) running_sum = 0 for n in range(1, N + 1): running_sum += 1 / mp.power(n, s) return term1 * running_sum
def big_xi(n, y, cancel_keff=False): if cancel_keff: keff_factor = mp.mpf(1) else: keff_factor = (2 - mp.powm1(y, 2)) poly_part = 3 + 3 * n * y + (3 * (n * n - 1)) * mp.power( y, 2) + (2 * n * (n * n - 1)) * mp.power(y, 3) return mp.power(-1, n) * keff_factor / ( mp.mpf(12) * mp.power(y, 5)) * mp.sqrt(mp.power( (1 - y) / (1 + y), n)) * poly_part
def two_stars(t,rho,NMAX): # compute Hermite polynomials Hm1 = (mp.mpf(1)-Phi(t))/phi(t) H = [hermite(N,t) for N in range(NMAX+1)] + [Hm1] # compute partial sum (up to NMAX) ans = mp.mpf(0) for N in range(NMAX+1): ans = ans + mp.power(rho,N) * mp.power(H[N-1],2) / mp.factorial(N) ans = ans*mp.power(phi(t),2) return( ans )
def Ht_Effective(z, t): """ This uses the effective approximation of H_t from Terry's blog :param z: point at which H_t is computed :param t: the "time" parameter :return: H_t as a sum of two terms that are analogous to A and B, but now also with an efffective error bound (returned as percentage of |H_t| """ z, t = mp.mpc(z), mp.mpc(t) sigma = (1 - z.imag) / 2.0 T = (z.real) / 2.0 Tdash = T + t * mp.pi() / 8.0 s1 = sigma + 1j * T s2 = 1 - sigma + 1j * T N = int((mp.sqrt(Tdash / (2 * mp.pi()))).real) alph1 = alpha1(s1) alph2 = alpha1(s2).conjugate() A0_expo = (t / 4.0) * alph1 * alph1 B0_expo = (t / 4.0) * alph2 * alph2 H01_est1 = H01(s1) H01_est2 = H01(s2).conjugate() #begin main estimate block A0 = mp.exp(A0_expo) * H01_est1 B0 = mp.exp(B0_expo) * H01_est2 A_sum = 0.0 B_sum = 0.0 for n in range(1, N + 1): A_sum += 1 / mp.power(n, s1 + (t / 2.0) * alph1 - (t / 4.0) * mp.log(n)) B_sum += 1 / mp.power( n, 1 - s1 + (t / 2.0) * alph2 - (t / 4.0) * mp.log(n)) A = A0 * A_sum B = B0 * B_sum H = (A + B) / 8.0 #end main estimate block #begin error block A0_err_expo = (t / 4.0) * (abs(alph1)**2) #A0_expo.real may also work B0_err_expo = (t / 4.0) * (abs(alph2)**2) #B0_expo.real may also work epserr_1 = mp.exp(A0_err_expo) * abs(H01_est1) * abs(eps_err(s1, t)) / ( (T - 3.33) * 8.0) epserr_2 = mp.exp(B0_err_expo) * abs(H01_est2) * abs(eps_err(s2, t)) / ( (T - 3.33) * 8.0) epserr = epserr_1 + epserr_2 C0 = mp.sqrt(mp.pi()) * mp.exp(-1 * (t / 64.0) * (mp.pi()**2)) * mp.power( Tdash, 1.5) * mp.exp(-1 * mp.pi() * T / 4.0) C = C0 * vwf_err(s1, t) / 8.0 toterr = epserr + C #print(epserr_1, epserr_2, C0, vwf_err(s1, t), C, toterr.real) #end error block if z.imag == 0: return (H.real, toterr.real / abs(H.real)) else: return (H, toterr.real / abs(H))
def Ft(s, t): # works only for x > 14 approx due to the sqrt(x/4PI) factor term1 = mp.power(mp.pi(), -0.5 * s) * mp.gamma(0.5 * (s + 4)) x = 2 * s.imag N = int(mp.sqrt(x / (4 * mp.pi()))) running_sum = 0 for n in range(1, N + 1): running_sum += mp.exp( (t / 16.0) * mp.power(mp.log( (s + 4) / (2 * mp.pi() * n * n)), 2)) / mp.power(n, s) # main eqn return term1 * running_sum
def SolveQuartic(a, b, c, d, e): """ SolveQuartic solves a quartic (fouth order) equation of the form ax^4 + bx^3 + cx^2 + dx + e = 0. For the detail of formulae presented here, see https://en.wikipedia.org/wiki/Quartic_function """ # Check types if type(a) is not mp.mpf: a = mp.mpf("{:.15e}".format(a)) if type(b) is not mp.mpf: b = mp.mpf("{:.15e}".format(b)) if type(c) is not mp.mpf: c = mp.mpf("{:.15e}".format(c)) if type(d) is not mp.mpf: d = mp.mpf("{:.15e}".format(d)) if type(e) is not mp.mpf: e = mp.mpf("{:.15e}".format(e)) """ # Working code (more readable but probably less precise) p = (8*a*c - 3*b*b)/(8*a*a) q = (b**3 - 4*a*b*c + 8*a*a*d)/(8*a*a*a) delta0 = c*c - 3*b*d + 12*a*e delta1 = 2*(c**3) - 9*b*c*d + 27*b*b*e + 27*a*d*d - 72*a*c*e Q = mp.nthroot(pointfive*(delta1 + mp.sqrt(delta1*delta1 - 4*mp.power(delta0, 3))), 3) S = pointfive*mp.sqrt(-mp.fdiv(mp.mpf('2'), mp.mpf('3'))*p + (one/(3*a))*(Q + delta0/Q)) x1 = -b/(4*a) - S + pointfive*mp.sqrt(-4*S*S - 2*p + q/S) x2 = -b/(4*a) - S - pointfive*mp.sqrt(-4*S*S - 2*p + q/S) x3 = -b/(4*a) + S + pointfive*mp.sqrt(-4*S*S - 2*p - q/S) x4 = -b/(4*a) + S - pointfive*mp.sqrt(-4*S*S - 2*p - q/S) """ p = mp.fdiv(Sub(Prod([number('8'), a, c]), Mul(number('3'), mp.power(b, 2))), Mul(number('8'), mp.power(a, 2))) q = mp.fdiv(Sum([mp.power(b, 3), Prod([number('-4'), a, b, c]), Prod([number('8'), mp.power(a, 2), d])]), Mul(8, mp.power(a, 3))) delta0 = Sum([mp.power(c, 2), Prod([number('-3'), b, d]), Prod([number('12'), a, e])]) delta1 = Sum([Mul(2, mp.power(c, 3)), Prod([number('-9'), b, c, d]), Prod([number('27'), mp.power(b, 2), e]), Prod([number('27'), a, mp.power(d, 2)]), Prod([number('-72'), a, c, e])]) Q = mp.nthroot(Mul(pointfive, Add(delta1, mp.sqrt(Add(mp.power(delta1, 2), Mul(number('-4'), mp.power(delta0, 3)))))), 3) S = Mul(pointfive, mp.sqrt(Mul(mp.fdiv(mp.mpf('-2'), mp.mpf('3')), p) + Mul(mp.fdiv(one, Mul(number('3'), a)), Add(Q, mp.fdiv(delta0, Q))))) # log.debug("p = {0}".format(mp.nstr(p, n=_prec))) # log.debug("q = {0}".format(mp.nstr(q, n=_prec))) # log.debug("delta0 = {0}".format(mp.nstr(delta0, n=_prec))) # log.debug("delta1 = {0}".format(mp.nstr(delta1, n=_prec))) # log.debug("Q = {0}".format(mp.nstr(Q, n=_prec))) # log.debug("S = {0}".format(mp.nstr(S, n=_prec))) x1 = Sum([mp.fdiv(b, Mul(number('-4'), a)), Neg(S), Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), mp.fdiv(q, S)])))]) x2 = Sum([mp.fdiv(b, Mul(number('-4'), a)), Neg(S), Neg(Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), mp.fdiv(q, S)]))))]) x3 = Sum([mp.fdiv(b, Mul(number('-4'), a)), S, Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), Neg(mp.fdiv(q, S))])))]) x4 = Sum([mp.fdiv(b, Mul(number('-4'), a)), S, Neg(Mul(pointfive, mp.sqrt(Sum([Mul(number('-4'), mp.power(S, 2)), Mul(number('-2'), p), Neg(mp.fdiv(q, S))]))))]) return [x1, x2, x3, x4]
def abtoybound(N, y, t, cond): sigma1, sigma2 = 0.5 * (1 + y), 0.5 * (1 - y) sum1_L, sum1_R, sum12_L, sum12_R, sum123_L, sum123_R, sum1235_L, sum1235_R = [ 0.0 for _ in range(8) ] ddxsum1_L, ddxsum1_R, ddxsum12_L, ddxsum12_R, ddxsum123_L, ddxsum123_R, ddxsum1235_L, ddxsum1235_R = [ 0.0 for _ in range(8) ] factorN = 1 / mp.power(N, 0.4) for n in range(1, 30 * N + 1): nf = float(n) denom1 = mp.power(nf, sigma1 + (t / 4.0) * mp.log(N * N / nf)) denom2 = mp.power(nf, sigma2 + (t / 4.0) * mp.log(N * N / nf)) term1_L = abs(cond[n][1] / denom1) term1_R = abs(cond[n][2] / denom2) sum1_L += term1_L sum1_R += term1_R ddxsum1_L += mp.log(n) * term1_L ddxsum1_R += mp.log(n) * term1_R term12_L = abs(cond[n][3] / denom1) term12_R = abs(cond[n][4] / denom2) sum12_L += term12_L sum12_R += term12_R ddxsum12_L += mp.log(n) * term12_L ddxsum12_R += mp.log(n) * term12_R term123_L = abs(cond[n][5] / denom1) term123_R = abs(cond[n][6] / denom2) sum123_L += term123_L sum123_R += term123_R ddxsum123_L += mp.log(n) * term123_L ddxsum123_R += mp.log(n) * term123_R term1235_L = abs(cond[n][7] / denom1) term1235_R = abs(cond[n][8] / denom2) sum1235_L += term1235_L sum1235_R += term1235_R ddxsum1235_L += mp.log(n) * term1235_L ddxsum1235_R += mp.log(n) * term1235_R sum1_L, sum12_L, sum123_L, sum1235_L = sum1_L - 1, sum12_L - 1, sum123_L - 1, sum1235_L - 1 sum1_R, sum12_R, sum123_R, sum1235_R = sum1_R * factorN, sum12_R * factorN, sum123_R * factorN, sum1235_R * factorN ddxsum1_L, ddxsum12_L, ddxsum123_L, ddxsum1235_L = 0.5 * ddxsum1_L, 0.5 * ddxsum12_L, 0.5 * ddxsum123_L, 0.5 * ddxsum1235_L ddxsum1_R, ddxsum12_R, ddxsum123_R, ddxsum1235_R = 0.5 * ddxsum1_R * factorN, 0.5 * ddxsum12_R * factorN, 0.5 * ddxsum123_R * factorN, 0.5 * ddxsum1235_R * factorN abdiff1, ddxsum1 = 1 - sum1_L - sum1_R, ddxsum1_L + ddxsum1_R abdiff12, ddxsum12 = 1 - sum12_L - sum12_R, ddxsum12_L + ddxsum12_R abdiff123, ddxsum123 = 1 - sum123_L - sum123_R, ddxsum123_L + ddxsum123_R abdiff1235, ddxsum1235 = 1 - sum1235_L - sum1235_R, ddxsum1235_L + ddxsum1235_R return [ sum1_L, sum1_R, abdiff1, ddxsum1_L, ddxsum1_R, ddxsum1, sum12_L, sum12_R, abdiff12, ddxsum12_L, ddxsum12_R, ddxsum12, sum123_L, sum123_R, abdiff123, ddxsum123_L, ddxsum123_R, ddxsum123, sum1235_L, sum1235_R, abdiff1235, ddxsum1235_L, ddxsum1235_R, ddxsum1235 ]
def BoysValue_Asymptotic(n, x): F = [] if x == mp.mpf("0"): for i in range(0, n+1): F.append(mp.mpf(1.0)/(mp.mpf(2.0*i+1))) else: for i in range(0, n+1): val = mp.sqrt( mp.pi() / mp.power(x, 2*i+1) ) val *= ( mp.fac2(2*i-1) / mp.power("2", i+1) ) F.append(val) return F
def v(sigma, s, t): T0 = s.imag T0dash = T0 + mp.pi() * t / 8.0 a0 = mp.sqrt(T0dash / (2 * mp.pi())) if (sigma >= 0): return 1 + 0.4 * mp.power(9, sigma) / a0 + 0.346 * mp.power( 2, 3 * sigma / 2.0) / (a0**2) if (sigma < 0): K = int(mp.floor(-1 * sigma) + 3) ksum = 0.0 for k in range(1, K + 2): ksum += mp.power(1.1 / a0, k) * mp.gamma(mp.mpf(k) / 2.0) return 1 + mp.power(0.9, mp.ceil(-1 * sigma)) * ksum
def abtoy_custom_mollifier(N, D, divisors): sharpsum = 0.0 a1 = mp.power(N, -0.4) divisors = [float(i) for i in divisors] for n in range(2, D * N + 1): bnp, anp = 0.0, 0.0 nf = float(n) denom = mp.power(nf, 0.7 + 0.1 * mp.log(N * N)) for d in divisors: common = deltaN(n, d * N) * divdelta(n, d) * lcoeff(d) bnp += common * bn(nf / d) anp += common * an(nf / d, N) sharpsum += max(abs(bnp + anp) / (1 + a1), abs(bnp - anp) / (1 - a1)) / denom return [N, sharpsum]
def min_value(self, denorm=True): """ Return the smallest possible value. If `denorm` is True, include denormalized values. """ return mp.power(2, self.min_exp(denorm))
def next_power(x, n=2): """ Return the value sign(x) * n^k such that n^k is the smallest value > |x| for integer k. """ x = abs(x) return mp.power(n, mp.floor(mp.log(x, n)) + 1)
def triangles(t,rho,NMAX): # compute Hermite polynomials and factorials Hm1 = (mp.mpf(1)-Phi(t))/phi(t) H = [hermite(N,t) for N in range(NMAX+1)] + [Hm1] factorial = [mp.factorial(i) for i in range(NMAX+1)] # compute partial sum (up to NMAX) ans = mp.mpf(0) for N in range(NMAX+1): rhoN = mp.power(rho,N) for i in range(N+1): for j in range(N+1-i): k = N-i-j ans = ans + rhoN * ( (H[N-i-1]/factorial[i]) * (H[N-j-1]/factorial[j]) * (H[N-k-1]/factorial[k])) ans = ans*mp.power(phi(t),3) return(ans)
def floor_power(x, n=2): """ Return the value sign(x) * n^k such that n^k is the largest value <= |x| for integer k. """ x = abs(x) return mp.power(n, mp.floor(mp.log(x, n)))
def pi(i: int) -> mp.mpf: if i <= 0: return 0 n = mp.mpf('3') r = mp.mpf('1') c = mp.mpf('1') for j in range(i): n = mp.mpf('2') * n old_r = c r = old_r / mp.mpf('2') a = mp.sqrt(mp.mpf('1') - mp.power(r, 2)) d = mp.mpf('1') - a c = mp.sqrt(mp.power(d, 2) + mp.power(r, 2)) P = n * old_r res = P / mp.mpf('2') return res
def compress(self, time_series: List[int]) -> int: if time_series is None or len(time_series) == 0: return 0 one_letter_probability = mp.mpf(1.0) / (self._alphabet_max_symbol - self._alphabet_min_symbol + 1) series_probability = mp.power(one_letter_probability, len(time_series)) return int(mp.ceil(-mp.log(series_probability, 2)))
def abtoy_arb_coeff(ldcoeffs): global N, D, divisors ldcoeffs = np.insert(ldcoeffs, 0, 1) sharpsum = 0.0 a1 = mp.power(N, -0.4) divisors = [float(i) for i in divisors] for n in range(2, D * N + 1): bnp, anp = 0.0, 0.0 nf = float(n) denom = mp.power(nf, 0.7 + 0.1 * mp.log(N * N)) for i, d in enumerate(divisors): common = deltaN(n, d * N) * divdelta(n, d) * ldcoeffs[i] bnp += common * bn(nf / d) anp += common * an(nf / d, N) sharpsum += max(abs(bnp + anp) / (1 + a1), abs(bnp - anp) / (1 - a1)) / denom print(ldcoeffs, sharpsum) return float(sharpsum)
def phi_decay(u, n_max=100): """ Computes Phi(u) in Terry' blog at https://terrytao.wordpress.com/2018/02/02/polymath15-second-thread-generalising-the-riemann-siegel-approximate-functional-equation/ :param u: input complex number :param n_max: upper limit for summation. It has to be a positive integer :return: Phi(u) """ running_sum = 0 u = mp.mpc(u) for n in range(1, n_max + 1): term1 = 2 * mp.pi() * mp.pi() * mp.power(n, 4) * mp.exp(9*u) \ - 3 * mp.pi() * mp.power(n, 2) * mp.exp(5*u) term2 = mp.exp(-1 * mp.pi() * mp.power(n, 2) * mp.exp(4 * u)) running_sum += term1 * term2 return running_sum
def composite(): for i in range(0, k): a = random.randint(2,100)#n-2) x = mp.fmod(mp.power(a,d),n) if x != 1 and x != n-1:# comp = True for r in range(1, s): x = mp.fmod(mp.power(x,2),n) if x == 1:# return a, s, d, r if x == n-1:# comp = False break """ if comp: return a, s, d else: print 'ha' """ return -1, s, d
def f(x): return Mul(number('2'), B)*x*x*x - Prod([number('3'), B, t])*x*x + Prod([number('3'), B, t, t])*x - Mul(B, mp.power(t, 3))
from mpmath import mp from jinja2 import Environment, FileSystemLoader class str_item: def __init__(self, n, l): self.number = n self.log10 = l[0:2] + "\,".join([l[i:i+3] for i in range(2, len(l), 3)]) if __name__ == "__main__": input_dps = 5 output_dps = 60 rows_per_page = 50 mp.dps = output_dps + 10 table_raw = [] for number in mp.arange(1.0, 10.0, mp.power(10, -(input_dps-1))): table_raw.append([number, mp.log10(number)]) table_str = [] table_str = [str_item(mp.nstr(row[0], input_dps), mp.nstr(row[1], output_dps)) for row in table_raw] pages = [table_str[i:i+rows_per_page] for i in range(0, len(table_str), rows_per_page)] latex_renderer = Environment( block_start_string = "%{", block_end_string = "%}", line_statement_prefix = "%#", variable_start_string = "%{{", variable_end_string = "%}}", loader = FileSystemLoader(".")) template = latex_renderer.get_template("template.tex")
print "usage: composite [odd integer to be tested] [parameter for accuracy]" print "output with n-1 as 2^s * d: (witness, s, d)" sys.exit() n = int(sys.argv[1]) # odd integer to be tested for primality """ s = int(sys.argv[2]) # n-1 as 2^s*d d = mp.mpf(sys.argv[3]) """ k = int(sys.argv[2]) # parameter that determines the accuracy of the test s = 0 d = 0 # find s and d first for i in range(0, 30): x = mp.fdiv((n-1), mp.power(2,i)) if x - long(x) == 0: s = i d = int(x) def composite(): for i in range(0, k): a = random.randint(2,100)#n-2) x = mp.fmod(mp.power(a,d),n) if x != 1 and x != n-1:# comp = True for r in range(1, s): x = mp.fmod(mp.power(x,2),n) if x == 1:# return a, s, d, r if x == n-1:#