def get_and_store_rot_matrix(fname):
        with open(fname) as rot_pickle:
            ROT_EE = pickle.load(rot_pickle)
            return ROT_EE[0]

        ROT_X = Matrix([
            [1, 0, 0],
            [0, cos(r), -sin(r)],
            [0, sin(r), cos(r)]
        ])

        ROT_Y = Matrix([
            [cos(p), 0, sin(p)],
            [0, 1, 0],
            [-sin(p), 0, cos(p)]
        ])

        ROT_Z = Matrix([
            [cos(y), -sin(y), 0],
            [sin(y), cos(y), 0],
            [0, 0, 1]
        ])

        ROT_EE = ROT_Z * ROT_Y * ROT_X

        Rot_Error = ROT_Z.subs(y, radians(180)) * ROT_Y.subs(p, radians(-90))
        ROT_EE = ROT_EE * Rot_Error

        with open(fname, 'w') as rot_pickle:
            pickle.dump(ROT_EE, rot_pickle)
        return ROT_EE
示例#2
0
def rotate_point(x, y, degrees):
    radians = math.radians(degrees)

    cos_theta = math.cos(radians)
    sin_theta = math.sin(radians)
    return x * cos_theta - y * sin_theta, \
           x * sin_theta + y * cos_theta
示例#3
0
    def distribution(self, theta, pkg=np):
        """Plasma distribution theta in degrees

        Args:
            theta (float or np.array or sp.Symbol): the angle(s) in degrees.
            pkg (module, optional): Module to use in the funciton. If sp, as
                sympy object will be returned. If np, a np.array or a float
                will be returned. Defaults to np.

        Returns:
            (float, float) or (sympy.Add, sympy.Mul) or
                (numpy.array, numpy.array): The R and Z coordinates of the
                point with angle theta
        """
        if pkg == np:
            theta = np.radians(theta)
        else:
            theta = mpmath.radians(theta)
        R = self.major_radius + self.minor_radius * pkg.cos(
            theta + self.triangularity * pkg.sin(theta)
        )
        Z = (
            self.elongation * self.minor_radius * pkg.sin(theta)
            + self.vertical_displacement
        )
        return R, Z
示例#4
0
def rot_matrix():
    r, p, y = symbols('r p y')
    rot_x = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r), cos(r)]])
    rot_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0, cos(p)]])

    rot_z = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0, 1]])

    rot_ee = rot_z * rot_y * rot_x

    rot_z_adj = rot_z.subs(y, radians(180))
    rot_y_adj = rot_y.subs(p, radians(-90))

    rot_error = rot_z_adj * rot_y_adj

    rot_ee = rot_ee * rot_error

    return rot_ee
示例#5
0
def read_dial(config, idx, img):
    offset, clockwise = config
    offset_r = offset * (np.pi / 180)

    height, width = img.shape[:2]
    center = [width / 2, height / 2]
    radius = int(width / 2)
    circle = sp.Circle(sp.Point(center), radius)

    offset_ray = sp.Ray(sp.Point(center), angle=mp.radians(offset))
    offset_img = img.copy()
    origin_point = [center[0], 0]
    offset_point = [
        math.cos(offset_r) * (origin_point[0] - center[0]) -
        math.sin(offset_r) * (origin_point[1] - center[1]) + center[0],
        math.sin(offset_r) * (origin_point[0] - center[0]) +
        math.cos(offset_r) * (origin_point[1] - center[1]) + center[1]
    ]
    cv2.line(offset_img, (int(center[0]), int(center[1])),
             (int(offset_point[0]), int(offset_point[1])), (0, 255, 0), 2)
    write_debug(offset_img, f"dial-{idx}")

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    write_debug(blurred, f"blurred-{idx}")

    edges = cv2.Canny(blurred, 50, 200)
    write_debug(edges, f"edges-{idx}")

    edge = find_hand_edge(edges)

    hand_edge_img = img.copy()
    cv2.line(hand_edge_img, (edge[0], edge[1]), (edge[2], edge[3]),
             (0, 255, 0), 2)
    write_debug(hand_edge_img, f"hand-edge-{idx}")

    hand_ray = generate_hand_ray(center, edge)
    circle_intersection = hand_ray.intersection(circle)[0]

    cv2.line(img, (int(center[0]), int(center[1])),
             (int(circle_intersection.x), int(circle_intersection.y)),
             (0, 0, 255), 2)
    write_debug(img, f"intersection-{idx}")

    angle_r = math.atan2(circle_intersection.y - center[1],
                         circle_intersection.x - center[0]) - math.atan2(
                             origin_point[1] - center[1],
                             origin_point[0] - center[0])
    angle = angle_r * 180 / np.pi
    if angle < 0:
        angle = 360 + angle
    angle_p = angle / 360
    if not clockwise:
        angle_p = 1 - angle_p

    return int(10 * angle_p)
示例#6
0
    def get_rotation_matrix():
        r, p, y = symbols('r p y')
        R_x = Matrix([[1, 0, 0],
                      [0, cos(r), -sin(r)],
                      [0, sin(r), cos(r)]])

        R_y = Matrix([[cos(p), 0, sin(p)],
                      [0, 1, 0],
                      [-sin(p), 0, cos(p)]])

        R_z = Matrix([[cos(y), -sin(y), 0],
                      [sin(y), cos(y), 0],
                      [0, 0, 1]])

        R_E = R_z * R_y * R_x
        # Compensate for rotation discrepancy between DH parameters and Gazebo
        R_error_correction = R_z.subs(y, radians(180)) * R_y.subs(p, radians(-90))
        R_E = R_E * R_error_correction
        return R_E
def convertToRadians(expr):
    newExpr = None
    if trigUnit == TrigUnit.Degrees:
        newExpr = mpmath.radians(expr)
    elif trigUnit == TrigUnit.Gradients:
        newExpr = expr * mpmath.pi / 200
    else:
        newExpr = expr

    return newExpr
示例#8
0
def calc_edge_compass_angle(edge):
    north_ray = sympy.Ray2D((0, 0), (0, 1))
    # 反向算进入edge,直观。
    edge_ray = sympy.Ray(*edge.getShape()[:2][::-1])
    angle = north_ray.closing_angle(edge_ray)
    angle = (angle + 2 * sympy.pi) % (2 * sympy.pi)
    angle_degrees = float(degrees(angle))
    angle_radians = float(radians(degrees(angle)))
    edge._angle_degrees = round(angle_degrees, 4)
    edge._angle_radians = round(angle_radians, 4)
    return angle_degrees, angle_radians
示例#9
0
    def __init__(self, a, c, b, thetaB, g, tiltS, rot_c, LF):
        self.a = a
        self.c = c
        self.b = b
        self.thetaB = thetaB
        self.g = Matrix([g[0], g[1], g[2]])  # g vector h, k, l coordinates
        self.tiltS = tiltS  # tilt of sample around [100]
        self.rot_c = rot_c  # rotation of crystal from [100] being along the tilt axis
        self.description = 'calculate screw beta for a given configuration'
        # define required relationships between reference frames

        # define required relationships between reference frames
        self.LF = LF
        # sample is tilted by tiltS wrt to the lab frame
        self.SF = sampleFrame(radians(tiltS), self.LF)
        # crystal is rotated by rot_c wrt to sample frame
        self.CF = crystalFrame(radians(rot_c), 0., self.SF)
        # displacement frame is rotated by rot_b wrt crystal frame
        self.DF = self.CF  # displacementFrame is the same as crystalFrame for a screw dislocation
        # the incident beam frame is rotated 180 around x wrt to the lab frame
        self.RincF = incidentBeamFrame(self.LF)
示例#10
0
 def __init__(self, a, c, b, rot_b, nu, thetaB, g, tiltS, rot_c, LF):
     self.a = a
     self.c = c
     self.b = b  # b = a [100] in crystal frame
     self.rot_b = rot_b  # rotation of burger vector around dislocation line
     self.nu = nu
     self.thetaB = thetaB
     self.g = Matrix([g[0], g[1], g[2]])  # g vector h, k, l coordinates
     self.tiltS = tiltS  # tilt of sample around [100]
     self.rot_c = rot_c  # rotation of crystal from [100] being along the tilt axis
     self.description = 'calculate edge beta for a given configuration'
     # define required relationships between reference frames
     self.LF = LF
     # sample is tilted by tiltS wrt to the lab frame
     self.SF = sampleFrame(radians(tiltS), self.LF)
     # crystal is rotated by rot_c wrt to sample frame
     self.CF = crystalFrame(radians(rot_c), 0., self.SF)
     # displacement frame is rotated by rot_b wrt crystal frame
     self.DF = displacementFrame(radians(rot_b), self.CF)
     # the incident beam frame is rotated 180 around x wrt to the lab frame
     self.RincF = incidentBeamFrame(self.LF)
     #use the inverse of pi as a constant for computational optimisation
     self.ipi = 1. / pi
示例#11
0
    def rotate_tcp(self, angle, angle_in_degrees=False, axis='i', save=True):
        if not (axis == 'i' or axis == 'j' or axis == 'k'):
            raise Exception(
                "not the right axis (i,j or k) selected: {}".format(axis))

        if angle_in_degrees:
            angle = radians(angle)
        if axis == 'i':
            self.Tcp = self.Tcp.orient_new_axis('Tcp', angle, self.Tcp.i)
        elif axis == 'j':
            self.Tcp = self.Tcp.orient_new_axis('Tcp', angle, self.Tcp.j)
        elif axis == 'k':
            self.Tcp = self.Tcp.orient_new_axis('Tcp', angle, self.Tcp.k)

        if save:
            self.save_tcp()
示例#12
0
def m_rot(axis, variable, use_degrees=True):
    """
    Defines a rotation matrix in Denavit-Hartenberg notation.

    :param axis: one of Cartesian coordinate system axes (x, y, z)
    :param variable: variable defining rotation
    :param use_degrees: uses degrees if True, uses rads otherwise
    :type axis: char
    :type variable: numbers.Number or sympy.Symbol
    :type use_degrees: bool
    :return: evaluated matrix
    :rtype: object inheriting from sym.matrices.MatrixBase
    """

    # check if axis provided is correct
    ax = axis.lower()
    assert ax in ['x', 'y', 'z'], "Invalid axis provided."

    # checks if variable is a Symbol or a number
    assert len([t for t in [numbers.Number, sym.Symbol, sym.Mul] if
                isinstance(variable, t)]) == 1, "'variable' should be a sympy.Symbol, a number or an expression."

    # convert to degrees if set to true
    if not isinstance(variable, sym.Symbol) and use_degrees:
        var = mp.radians(variable)
    else:
        var = variable

    return sym.N(sym.Matrix([
        [
            {'x': 1}.get(ax, sym.cos(var)),
            {'z': -sym.sin(var)}.get(ax, 0),
            {'y': sym.sin(var)}.get(ax, 0),
            0],
        [
            {'z': sym.sin(var)}.get(ax, 0),
            {'y': 1}.get(ax, sym.cos(var)),
            {'x': -sym.sin(var)}.get(ax, 0),
            0],
        [
            {'y': -sym.sin(var)}.get(ax, 0),
            {'x': sym.sin(var)}.get(ax, 0),
            {'z': 1}.get(ax, sym.cos(var)),
            0],
        [0, 0, 0, 1, ]
    ]), 5, chop=True)
    def rotate_point_around_anchor(self, x, y, anchor_x, anchor_y, angle):
        anglefrac = angle.as_integer_ratio()
        radian_qty = radians(anglefrac[0] / anglefrac[1])

        old_x = x - anchor_x
        old_y = y - anchor_y

        coord = matrix([float(old_x), float(old_y)])
        transform = matrix([[cos(radian_qty), -sin(radian_qty)], [sin(radian_qty), cos(radian_qty)]])
        result = transform * coord

        new_x = Decimal(str(result[0]))
        new_y = Decimal(str(result[1]))

        new_x += anchor_x
        new_y += anchor_y

        return new_x, new_y
示例#14
0
def move(headX, faceWidth):

    #Rotate robot
    moveTime = abs(6000 - headX) / ANGULAR_VELOCITY

    if headX < 6000:
        moveRight(moveTime)
    elif headX > 6000:
        moveLeft(moveTime)

    #Move robot
    dist = mpmath.cot(mpmath.radians(62.2 * (w / 640) / 2))
    moveTime = abs(dist - faceDistTarget) * VELOCITY

    if dist < faceDistTarget:
        moveBack(moveTime)
    elif dist > faceDistTarget:
        moveForward(moveTime)

    client.sendData("Are you Sarah Connor?")
示例#15
0
 def p_expression_nd(self, p):
     '''expression : SIN LPAREN expression RPAREN
                   | COS LPAREN expression RPAREN
                   | TAN LPAREN expression RPAREN
                   | ABS LPAREN expression RPAREN
                   | SQRT LPAREN expression RPAREN
                   | RAD LPAREN expression RPAREN
                   | ID LPAREN funcargs RPAREN'''
     # p[1] = symbols('f g h', cls=Function)
     p[0] = str(p[1]) + str(p[2]) + str(p[3]) + str(p[4])
     if p[1] == 'sin':
         p[0] = sin(p[3])
     elif p[1] == 'cos':
         p[0] = cos(p[3])
     elif p[1] == 'tan':
         p[0] = tan(p[3])
     elif p[1] == 'abs':
         p[0] = Abs(p[3])
     elif p[1] == 'sqrt':
         p[0] = sqrt(p[3])
     elif p[1] == 'rad':
         p[0] = mpmath.radians(p[3])
     else:
         p[0] = Function(p[1])(*p[3])
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0
    class Position:
        def __init__(self,EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]
    class Orientation:
        def __init__(self,EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self,position,orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position,orientation)

    class Pose:
        def __init__(self,comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()
    
    ########################################################################################
    ## 

    ## Insert IK code here!

    # Twist Angles
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols('alpha0:7')
    # Link Lengths
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')
    # Link Offsets
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')
    # Joint Angles
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')

    dh_table = {
        alpha0:        0, a0:      0, d1: 0.75, q1: q1,
        alpha1: -pi / 2., a1:   0.35, d2:    0, q2: q2 - (pi / 2.),
        alpha2:       0., a2:   1.25, d3:    0, q3: q3,
        alpha3: -pi / 2., a3: -0.054, d4:  1.5, q4: q4,
        alpha4:  pi / 2., a4:      0, d5:    0, q5: q5,
        alpha5: -pi / 2., a5:      0, d6:    0, q6: q6,
        alpha6:        0, a6:      0, d7:0.303, q7: 0,  
    }

    def tf_matrix(alpha, a, d, theta):
        TF = Matrix([
            [             cos(theta),             -sin(theta),           0,               a],
            [sin(theta) * cos(alpha), cos(theta) * cos(alpha), -sin(alpha), -sin(alpha) * d],
            [sin(theta) * sin(alpha), cos(theta) * sin(alpha),  cos(alpha),  cos(alpha) * d],
            [                      0,                       0,           0,               1]
        ])
        return TF

    t0_1  = tf_matrix(alpha0, a0, d1, q1).subs(dh_table)
    t1_2  = tf_matrix(alpha1, a1, d2, q2).subs(dh_table)
    t2_3  = tf_matrix(alpha2, a2, d3, q3).subs(dh_table)
    t3_4  = tf_matrix(alpha3, a3, d4, q4).subs(dh_table)
    t4_5  = tf_matrix(alpha4, a4, d5, q5).subs(dh_table)
    t5_6  = tf_matrix(alpha5, a5, d6, q6).subs(dh_table)
    t6_ee = tf_matrix(alpha6, a6, d7, q7).subs(dh_table)

    t0_ee = t0_1 * t1_2 * t2_3 * t3_4 * t4_5 * t5_6 * t6_ee 

    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
                             [req.poses[x].orientation.x, 
                              req.poses[x].orientation.y, 
                              req.poses[x].orientation.z, 
                              req.poses[x].orientation.w]
                         )

    r, p, y = symbols('r p y')

    ROT_x = Matrix([
            [1,      0,       0],
            [0, cos(r), -sin(r)],
            [0, sin(r),  cos(r)]
            ])

    ROT_y = Matrix([
            [ cos(p), 0,  sin(p)],
            [      0, 1,       0],
            [-sin(p), 0,  cos(p)]
            ])

    ROT_z = Matrix([
            [cos(y), -sin(y), 0],
            [sin(y),  cos(y), 0],
            [     0,       0, 1]
            ])

    rot_ee = ROT_z * ROT_y * ROT_x

    Rot_Corr = ROT_z.subs(y, radians(180))*ROT_y.subs(p, radians(-90))

    rot_ee = rot_ee * Rot_Corr
    rot_ee = rot_ee.subs({'r': roll, 'p': pitch, 'y': yaw})

    EE = Matrix([
         [px],
         [py],
         [pz]
         ])

    WC = EE - (0.303) * rot_ee[:,2]

    theta1 = atan2(WC[1], WC[0])

    l1_horiz = dh_table[a1]
    l1_z = dh_table[d1]

    wc_x = WC[0]
    wc_y = WC[1]
    wc_horiz = sqrt(wc_x * wc_x + wc_y * wc_y) - l1_horiz
    wc_z = WC[2] - l1_z

    l2_len = dh_table[a2] # 1.25
    l3_x = dh_table[d4] # 1.5
    l3_y = dh_table[a3] #-0.054
    l3_len = sqrt(l3_x * l3_x + l3_y * l3_y)
    l3_theta_offset = atan2(l3_y, l3_x)

    A = l3_len
    B = sqrt(wc_horiz * wc_horiz + wc_z * wc_z)
    C = l2_len

    a = acos((B * B + C * C - A * A) / (2 * B * C))
    b = acos((A * A + C * C - B * B) / (2 * A * C))
    c = acos((A * A + B * B - C * C) / (2 * A * B))
    d = atan2(wc_z, wc_horiz)
    
    theta2 = (pi / 2) - (a + d)
    theta3 = (pi / 2) - (b + l3_theta_offset)

    r0_3 = t0_1[0:3, 0:3] * t1_2[0:3, 0:3] * t2_3[0:3, 0:3]
    r0_3 = r0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    r3_6 = r0_3.inv("LU") * rot_ee

    theta4 = atan2(r3_6[2, 2], -r3_6[0, 2])
    theta5 = atan2(sqrt(r3_6[0,2]*r3_6[0,2] + r3_6[2,2]*r3_6[2,2]), r3_6[1,2])
    theta6 = atan2(-r3_6[1,1], r3_6[1,0])
    
    ## 
    ########################################################################################
    
    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!
    FK = t0_ee.evalf(subs={q1: theta1, q2: theta2, q3: theta3, q4: theta4, q5: theta5, q6: theta6})

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1], WC[2]] # <--- Load your calculated WC values in this array
    your_ee = [FK[0,3], FK[1,3], FK[2,3]] # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print ("\nTotal run time to calculate joint angles from pose is %04.4f seconds" % (time()-start_time))

    # Find WC error
    if not(sum(your_wc)==3):
        wc_x_e = abs(your_wc[0]-test_case[1][0])
        wc_y_e = abs(your_wc[1]-test_case[1][1])
        wc_z_e = abs(your_wc[2]-test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print ("\nWrist error for x position is: %04.8f" % wc_x_e)
        print ("Wrist error for y position is: %04.8f" % wc_y_e)
        print ("Wrist error for z position is: %04.8f" % wc_z_e)
        print ("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1-test_case[2][0])
    t_2_e = abs(theta2-test_case[2][1])
    t_3_e = abs(theta3-test_case[2][2])
    t_4_e = abs(theta4-test_case[2][3])
    t_5_e = abs(theta5-test_case[2][4])
    t_6_e = abs(theta6-test_case[2][5])
    print ("\nTheta 1 error is: %04.8f" % t_1_e)
    print ("Theta 2 error is: %04.8f" % t_2_e)
    print ("Theta 3 error is: %04.8f" % t_3_e)
    print ("Theta 4 error is: %04.8f" % t_4_e)
    print ("Theta 5 error is: %04.8f" % t_5_e)
    print ("Theta 6 error is: %04.8f" % t_6_e)
    print ("\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print (" ")

    # Find FK EE error
    if not(sum(your_ee)==3):
        ee_x_e = abs(your_ee[0]-test_case[0][0][0])
        ee_y_e = abs(your_ee[1]-test_case[0][0][1])
        ee_z_e = abs(your_ee[2]-test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print ("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print ("End effector error for y position is: %04.8f" % ee_y_e)
        print ("End effector error for z position is: %04.8f" % ee_z_e)
        print ("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#17
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0
    class Position:
        def __init__(self,EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]
    class Orientation:
        def __init__(self,EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self,position,orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position,orientation)

    class Pose:
        def __init__(self,comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()
    ########################################################################################
    ## Insert IK code here! starting at: Define DH parameter symbols
	
	# Define DH param symbols
	d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8') # link offset
	a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7') # link length
	alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols('alpha0:7') # twist angles
	
	# Joint angle symbols
	q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8') 
	
	# Para mas informacion debo buscar la seccion KR210 Forward Kinematics
	# Modified DH params
	DH_Table = {	alpha0:		 0,	a0:	     0,	d1:	 0.75,	q1:			 q1,
					alpha1:	-pi/2.,	a1:	  0.35,	d2:		0,	q2:	-pi/2. + q2,
					alpha2:		 0,	a2:   1,25,	d3:		0,	q3:			 q3,
					alpha3: -pi/2.,	a3:	-0.054,	d4:	  1.5,	q4:	         q4,
					alpha4:	 pi/2.,	a4:	     0,	d5:	    0,	q5:			 q5,
					alpha5:	-pi/2.,	a5:	     0,	d6:		0,	q6:	         q6,
					alpha6:		 0,	a6:      0,	d7: 0.303,	q7:			  0}
    
	# Define Modified DH Transformation matrix
	def TF_Matrix(alpha, a, d, q):
		TF = Matrix([[			 cos(q),		   -sin(q),			  0,			 a],
					 [sin(q)*cos(alpha), cos(q)*cos(alpha), -sin(alpha), -sin(alpha)*d],
					 [sin(q)*sin(alpha), cos(q)*sin(alpha),  cos(alpha),  cos(alpha)*d],
					 [				  0, 				 0, 		  0, 			 1]])
		return TF
	
	# Create individual transformation matrices
	
	T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
	T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(DH_Table)
	T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(DH_Table)
	T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(DH_Table)
	T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(DH_Table)
	T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(DH_Table)
	T6_E = TF_Matrix(alpha6, a6, d7, q7).subs(DH_Table)
	
	T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_E
	
	# Extract end-effector position and orientation from request
	# px, py, pz = end-effector position
	# roll, pitch, yaw = end-effector orientation
	
	px = req.poses[x].position.x
	py = req.poses[x].position.y
	pz = req.poses[x].position.z
	
	(roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
	[req.poses[x].orientation.x, req.poses[x].orientation.y, 
	req.poses[x].orientation.z, req.poses[x].orientation.w)])
	
	# Find EE rotation matrix
	# Define RPY rotation matrices
	# http://planning.cs.uiuc.edu/node102.html : Muy importante explica las matrices siguientes.
	
	r, p, y = symbols('r p y')
	
	ROT_x = Matrix([[1,		 0,		  0],
					[0, cos(r), -sin(r)],
					[0, sin(r), cos(r)]])	# ROLL 
	
	ROT_y = Matrix([[ cos(p), 0, sin(p)],
					[      0, 1,      0],
					[-sin(p), 0, cos(p)]])	# PITCH 
					
	ROT_z = Matrix([[ cos(y), -sin(y),0],
					[ sin(y),  cos(y),0],
					[      0,       0,1]])	# YAW

	ROT_EE = ROT_z * ROT_y * ROT_x
	
	# More information can be found in  KR210 Forward Kinematics section
	Rot_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))
	# To align our DH parameters with that of the you RDF file 
	# once we have a rotation matrix to the end-effector.
	ROT_EE = ROT_EE * Rot_Error
	ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})
	EE = Matrix([[px],
				 [py],
				 [pz]])
				 
	WC = EE - (0.303) * ROT_EE[:,2]
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    ########################################################################################
    ##

    ## Insert IK code here!

    # Create symbols
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')  # theta_i
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')

    # Create Modified DH parameters
    DH_table = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        alpha1: radians(-90),
        a1: 0.35,
        d2: 0,
        q2: q2 - radians(90),
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        alpha3: radians(-90),
        a3: -0.054,
        d4: 1.50,
        alpha4: radians(90),
        a4: 0,
        d5: 0,
        alpha5: radians(-90),
        a5: 0,
        d6: 0,
        alpha6: 0,
        a6: 0,
        d7: 0.303
    }

    # Define Modified DH Transformation matrix
    def DH_TF_Matrix(alpha, a, d, q):
        T = Matrix([[cos(q), -sin(q), 0, a],
                    [
                        sin(q) * cos(alpha),
                        cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d
                    ],
                    [
                        sin(q) * sin(alpha),
                        cos(q) * sin(alpha),
                        cos(alpha),
                        cos(alpha) * d
                    ], [0, 0, 0, 1]])
        return T

    # Create individual transformation matrices
    T0_1 = DH_TF_Matrix(alpha0, a0, d1, q1).subs(DH_table)
    T1_2 = DH_TF_Matrix(alpha1, a1, d2, q2).subs(DH_table)
    T2_3 = DH_TF_Matrix(alpha2, a2, d3, q3).subs(DH_table)
    T3_4 = DH_TF_Matrix(alpha3, a3, d4, q4).subs(DH_table)
    T4_5 = DH_TF_Matrix(alpha4, a4, d5, q5).subs(DH_table)
    T5_6 = DH_TF_Matrix(alpha5, a5, d6, q6).subs(DH_table)
    T6_EE = DH_TF_Matrix(alpha6, a6, d7, q7).subs(DH_table)

    T0_2 = (T0_1 * T1_2)
    T0_3 = (T0_2 * T2_3)
    T0_4 = (T0_3 * T3_4)
    T0_5 = (T0_4 * T4_5)
    T0_6 = (T0_5 * T5_6)
    T0_EE = (T0_6 * T6_EE)

    # Extract end-effector position and orientation from request
    # px,py,pz = end-effector position
    # roll, pitch, yaw = end-effector orientation
    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    # Correction Needed to Account of Orientation Difference Between Definition of
    # Gripper Link in URDF versus DH Convention
    def rot_x(q):
        R_x = Matrix([[1, 0, 0], [0, cos(q), -sin(q)], [0, sin(q), cos(q)]])
        return R_x

    def rot_y(q):
        R_y = Matrix([[cos(q), 0, sin(q)], [0, 1, 0], [-sin(q), 0, cos(q)]])
        return R_y

    def rot_z(q):
        R_z = Matrix([[cos(q), -sin(q), 0], [sin(q), cos(q), 0], [0, 0, 1]])
        return R_z

    r, p, y = symbols('r p y')
    R_corr = rot_z(y).subs(y, radians(180)) * rot_y(p).subs(p, radians(-90))

    R_EE = rot_z(y) * rot_y(p) * rot_x(r)
    R_EE = R_EE * R_corr

    R_EE = R_EE.subs({'r': roll, 'p': pitch, 'y': yaw})
    EE = Matrix([[px], [py], [pz]])
    WC = EE - DH_table[d7] * R_EE[:, 2]

    # Calculate joint angles using Geometric IK method
    theta1 = atan2(WC[1], WC[0])

    # SSS triangle for theta2 and theta3
    side_a = sqrt(DH_table[d4] * DH_table[d4] + DH_table[a3] * DH_table[a3])
    r = sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - DH_table[a1]
    s = WC[2] - DH_table[d1]
    side_b = sqrt(r * r + s * s)
    side_c = DH_table[a2]

    angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) /
                   (2 * side_b * side_c))
    angle_b = acos((side_c * side_c + side_a * side_a - side_b * side_b) /
                   (2 * side_c * side_a))

    theta2 = radians(90) - angle_a - atan2(s, r)
    theta3 = radians(90) - angle_b - atan2(DH_table[a3], DH_table[d4])

    # Inverse Orientation
    R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    R3_6 = R0_3.transpose() * R_EE

    # Euler angles from rotation matrix
    theta5 = atan2(sqrt(R3_6[0, 2]**2 + R3_6[2, 2]**2), R3_6[1, 2])
    # Choosing between multiple possible solutions:
    if sin(theta5) < 0:
        theta4 = atan2(-R3_6[2, 2], R3_6[0, 2])
        theta6 = atan2(R3_6[1, 1], -R3_6[1, 0])
    else:
        theta4 = atan2(R3_6[2, 2], -R3_6[0, 2])
        theta6 = atan2(-R3_6[1, 1], R3_6[1, 0])

    ##
    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!
    FK = T0_EE.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })
    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # <--- Load your calculated WC values in this array
    your_ee = [
        FK[0, 3], FK[1, 3], FK[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
def test_code(test_case):
    """
    This is the set up code, Don't modify.
    """
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    # DH param symbols
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')  # link offset
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')  # link length
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')  # twist angle
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')  # Joint angle

    # Create Modified DH parameters (KR210 Forward kinematics section)
    DH_Table = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        q1: q1,
        alpha1: rad(-90),
        a1: 0.35,
        d2: 0,
        q2: q2 - rad(90),
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alpha3: rad(-90),
        a3: -0.054,
        d4: 1.50,
        q4: q4,
        alpha4: rad(90),
        a4: 0,
        d5: 0,
        q5: q5,
        alpha5: rad(-90),
        a5: 0,
        d6: 0,
        q6: q6,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    # Create Individual Transformation matrices for each joint transition
    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(DH_Table)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(DH_Table)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(DH_Table)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(DH_Table)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(DH_Table)
    T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(DH_Table)
    T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE

    # Extract end-effector position and orientation from request
    # px,py,pz = end-effector position
    # roll, pitch, yaw = end-effector orientation
    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    # Find EE rotation matrix
    # Define RPY rotation matrices
    # http://planning.cs.uiuc.edu/node102.html

    r, p, y = symbols('r p y')  # Gyroscope symbols - Roll, Pitch and Yaw
    ROT_x = rot_x(r)
    ROT_y = rot_y(p)
    ROT_z = rot_z(y)
    ROT_EE = ROT_z * ROT_y * ROT_x

    # KR210 Forward Kinematics section for future details
    Rot_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))
    ROT_EE = ROT_EE * Rot_Error
    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

    EE = Matrix([[px], [py], [pz]])

    WC = EE - 0.303 * ROT_EE[:, 2]

    # Calculate joint angles using Geometric IK method.
    # More information can be found in the Inverse Kinematics with Kuka KR210
    WC1_0_dist = sqrt(WC[0] * WC[0] + WC[1] * WC[1])
    theta1 = atan2(WC[1], WC[0])

    # SSS triangle for theta2 and theta3
    side_a = 1.501
    side_b = sqrt(pow((WC1_0_dist - 0.35), 2) + pow((WC[2] - 0.75), 2))
    side_c = 1.25

    angle_a = acos(((side_b * side_b) + side_c * side_c - side_a * side_a) /
                   (2 * side_b * side_c))
    angle_b = acos(((side_a * side_a) + side_c * side_c - side_b * side_b) /
                   (2 * side_a * side_c))
    angle_c = acos(((side_a * side_a) + side_b * side_b - side_c * side_c) /
                   (2 * side_a * side_b))

    theta2 = pi / 2 - angle_a - atan2(WC[2] - 0.75, WC1_0_dist - 0.35)
    theta3 = pi / 2 - (angle_b + 0.036)

    R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})
    R3_6 = R0_3.inv("LU") * ROT_EE

    # Euler angles from rotation matrix
    # More information can be found in the Euler Angles from a Rotation Matrix section
    theta4 = atan2(R3_6[2, 2], -R3_6[0, 2])
    theta5 = atan2(sqrt(R3_6[0, 2] * R3_6[0, 2] + R3_6[2, 2] * R3_6[2, 2]),
                   R3_6[1, 2])
    theta6 = atan2(-R3_6[1, 1], R3_6[1, 0])

    # Populate response for the IK request
    # In the next line replace theta1,theta2...,theta6 by your joint angle variables
    # Forward Kinematics
    FK = T0_EE.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    # End of forward kinematics
    ########################################################################################

    # For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # Load your calculated WC values in this array
    your_ee = FK[:3,
                 3]  # Load your calculated end effector value from your forward kinematics

    # Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
def test_code(POS):
    ## Set up code
    ## Do not modify!

    # x = 0

    ########################################################################################
    ##

    ## Insert IK code here!
    theta1 = 0
    theta2 = 0
    theta3 = 0
    theta4 = 0
    theta5 = 0
    theta6 = 0
    ### Your FK code here
    # Create symbols
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6, = symbols(
        'alpha0:7')
    #
    #
    # Create Modified DH parameters
    s = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        q1: q1,
        alpha1: -pi / 2.,
        a1: 0.35,
        d2: 0,
        q2: -pi / 2. + q2,
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alpha3: -pi / 2.,
        a3: -0.054,
        d4: 1.50,
        q4: q4,
        alpha4: pi / 2.,
        a4: 0,
        d5: 0,
        q5: q5,
        alpha5: -pi / 2.,
        a5: 0,
        d6: 0,
        q6: q6,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    #
    #
    # Create individual transformation matrices
    def TF_Matrix(alpha, a, d, q):
        TF = Matrix([[cos(q), -sin(q), 0, a],
                     [
                         sin(q) * cos(alpha),
                         cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d
                     ],
                     [
                         sin(q) * sin(alpha),
                         cos(q) * sin(alpha),
                         cos(alpha),
                         cos(alpha) * d
                     ], [0, 0, 0, 1]])
        return TF

    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(s)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(s)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(s)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(s)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(s)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(s)
    T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(s)

    T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE

    # Define RPY rotation matices
    px, py, pz, roll, pitch, yaw = symbols('px, py, pz, r, p, y')

    ROT_x = Matrix([[1, 0, 0], [0, cos(roll), -sin(roll)],
                    [0, sin(roll), cos(roll)]])  # roll

    ROT_y = Matrix([[cos(pitch), 0, sin(pitch)], [0, 1, 0],
                    [-sin(pitch), 0, cos(pitch)]])  # pitch

    ROT_z = Matrix([[cos(yaw), -sin(yaw), 0], [sin(yaw), cos(yaw), 0],
                    [0, 0, 1]])  # yaw

    ROT_EE = ROT_z * ROT_y * ROT_x
    ROT_corr = ROT_EE * ROT_z.subs(yaw, radians(180)) * ROT_y.subs(
        pitch, radians(-90))

    EE = Matrix([[px], [py], [pz]])
    WC = EE - 0.303 * ROT_EE[:, 2]  # d7 = 0.303

    theta1 = atan2(WC[1], WC[0])

    side_a = 1.501  # d4.subs(s)
    side_b = simplify(
        sqrt((sqrt(WC[0]**2 + WC[1]**2) - 0.35)**2 + (WC[2] - 0.75)**2))
    side_c = 1.25  # a2.subs(s)

    #angle_a = simplify(acos((side_b**2 + side_c**2 - side_a**2)/(2 * side_b * side_c)))
    #angle_b = simplify(acos((side_a**2 + side_c**2 - side_b**2)/(2 * side_a * side_c)))
    #angle_c = simplify(acos((side_a**2 + side_b**2 - side_c**2)/(2 * side_a * side_b)))

    #theta2 = simplify(pi/2 - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0]**2 + WC[1]**2) - 0.35))
    #theta3 = simplify(pi/2 - (angle_b + 0.036))

    T0_4 = T0_1 * T1_2 * T2_3 * T3_4
    R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
    # R0_3_inv = simplify(R0_3.inv("LU"))

    # R3_6 = simplify(R0_3.inv("LU") * ROT_EE)

    # Extract end-effector position and orientation from request
    # px, py, pz = end-effector position
    # roll, pitch, yaw = end-effectro orientation
    for x in range(len(POS)):
        start_time = time()
        pos = {
            px: POS[x][0],
            py: POS[x][1],
            pz: POS[x][2],
            roll: POS[x][3],
            pitch: POS[x][4],
            yaw: POS[x][5]
        }

        print "No. ", x, ", POS =", px, py, pz, roll, pitch, yaw

        #EE = Matrix([[px], [py], [pz]])
        #WC = EE - 0.303 * ROT_EE[:,2] # d7 = 0.303
        EE = EE.subs(pos)
        WC = WC.subs(pos)
        #
        # Calculate joint angles using Geometric IK method
        # for JT1, JT2, JT3
        side_b = side_b.subs(
            pos
        )  # (sqrt((sqrt(WC[0]**2 + WC[1]**2) - 0.35)**2 + (WC[2] - 0.75)**2))

        angle_a = (acos(
            (side_b**2 + side_c**2 - side_a**2) / (2 * side_b * side_c)))
        angle_b = (acos(
            (side_a**2 + side_c**2 - side_b**2) / (2 * side_a * side_c)))
        angle_c = (acos(
            (side_a**2 + side_b**2 - side_c**2) / (2 * side_a * side_b)))

        theta1 = theta1.subs(pos)
        theta2 = (pi / 2 - angle_a - atan2(WC[2] - 0.75,
                                           sqrt(WC[0]**2 + WC[1]**2) - 0.35))
        theta3 = (pi / 2 - (angle_b + 0.036))

        # for JT4, JT5, JT6
        R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})
        R0_3_inv = simplify(R0_3.inv("LU"))
        R3_6 = R0_3_inv * ROT_EE.subs(pos)

        r13 = R3_6[0, 2]
        r33 = R3_6[2, 2]
        r23 = R3_6[1, 2]
        r21 = R3_6[1, 0]
        r22 = R3_6[1, 1]
        r12 = R3_6[0, 1]
        r32 = R3_6[2, 1]

        theta5 = (atan2(sqrt(r13**2 + r33**2), r23)).evalf()

        if (sin(theta5) < 0):
            # print("BELOW!!!")
            theta4 = (atan2(-r33, r13)).evalf()
            theta6 = (atan2(r22, -r21)).evalf()
        elif (theta5 == 0):
            # print("EQUAL!!!")
            theta4 = 0
            theta6 = (atan2(-r12, -r32)).evalf()
        else:
            # print("ELSE!!!!!")
            theta4 = (atan2(r33, -r13)).evalf()
            theta6 = (atan2(-r22, r21)).evalf()

        while (theta4 > pi):
            theta4 = theta4 - 2 * pi
        while (theta4 < -pi):
            theta4 = 2 * pi + theta4
        while (theta5 > pi):
            theta5 = theta5 - 2 * pi
        while (theta5 < -pi):
            theta5 = 2 * pi + theta5
        while (theta6 > pi):
            theta6 = theta6 - 2 * pi
        while (theta6 < -pi):
            theta6 = 2 * pi + theta6

    ##
    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!
        FK = T0_EE.evalf(subs={
            q1: theta1,
            q2: theta2,
            q3: theta3,
            q4: theta4,
            q5: theta5,
            q6: theta6
        })
        FK3 = T0_4.evalf(subs={
            q1: theta1,
            q2: theta2,
            q3: theta3,
            q4: theta4,
            q5: theta5,
            q6: theta6
        })
        ## End your code input for forward kinematics here!
        ########################################################################################

        ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
        # your_wc = [1,1,1] # <--- Load your calculated WC values in this array
        # your_ee = [1,1,1] # <--- Load your calculated end effector value from your forward kinematics
        rqst_wc = [WC[0], WC[1], WC[2]]
        your_wc = [FK3[0, 3], FK3[1, 3], FK3[2, 3]]
        # print "WC =", WC
        # print "FK3 =", FK3[0,3], FK3[1,3], FK3[2,3]
        # print "theta =", theta4, ", ", theta5, ", ", theta6
        #print 'WC=',WC
        #print 'T03=',FK3[0,3], FK3[1,3], FK3[2,3]
        your_ee = [FK[0, 3], FK[1, 3], FK[2, 3]]
        ########################################################################################

        ## Error analysis
        print(
            "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
            % (time() - start_time))

        #    # Find WC error
        #    if not(sum(your_wc)==3):
        #        wc_x_e = abs(your_wc[0]-rqst_wc[0])
        #        wc_y_e = abs(your_wc[1]-rqst_wc[1])
        #        wc_z_e = abs(your_wc[2]-rqst_wc[2])
        #        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        #        print ("\nWrist error for x position is: %04.8f" % wc_x_e)
        #        print ("Wrist error for y position is: %04.8f" % wc_y_e)
        #        print ("Wrist error for z position is: %04.8f" % wc_z_e)
        #        print ("Overall wrist offset is: %04.8f units" % wc_offset)

        # Find FK EE error
        if not (sum(your_ee) == 3):
            ee_x_e = abs(your_ee[0] - POS[x][0])
            ee_y_e = abs(your_ee[1] - POS[x][1])
            ee_z_e = abs(your_ee[2] - POS[x][2])
            ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
            print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
            print("End effector error for y position is: %04.8f" % ee_y_e)
            print("End effector error for z position is: %04.8f" % ee_z_e)
            print("Overall end effector offset is: %04.8f units \n" %
                  ee_offset)
def rotation_base_ee(roll, pitch, yaw):
    rot_end_effector = rotation_z(yaw) * rotation_y(pitch) * rotation_x(roll)
    rot_correction = rotation_z(radians(180)) * rotation_y(radians(-90))
    return rot_end_effector * rot_correction
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0
    class Position:
        def __init__(self,EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]
    class Orientation:
        def __init__(self,EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self,position,orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position,orientation)

    class Pose:
        def __init__(self,comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()
    
    ########################################################################################
    ## 

    ## Insert IK code here!
#print('assigning DH parameters')

    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8') # link offset

    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7') # link length

    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols('alpha0:7') # twist angle

    # joint angle symbols

    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')

#    print 'DH parameters assigned'

#    print 'Created DH Table'

    # Modified DH params

    DH_Table = {alpha0: 0, 	a0: 0, 		d1: 0.75, 	q1: q1,
		alpha1: -pi/2., a1: 0.35,	d2: 0, 		q2: -pi/2. + q2,
		alpha2: 0, 	a2: 1.25, 	d3: 0, 		q3: q3,
		alpha3: -pi/2., a3: -0.054, 	d4: 1.5, 	q4: q4,
		alpha4: pi/2, 	a4: 0, 		d5: 0, 		q5: q5,
		alpha5: -pi/2., a5: 0, 		d6: 0, 		q6: q6,
		alpha6: 0, 	a6: 0, 		d7: 0.303, 	q7: 0}

#    print 'DH Table Created'

    # define modified DH transformation matrix

#    print 'Creating TF Matrix'

    def TF_Matrix(alpha, a, d, q):
	TF = Matrix([
			[cos(q), 		-sin(q), 		0, 		a],
	     		[sin(q)*cos(alpha), 	cos(q)*cos(alpha), 	-sin(alpha), 	-sin(alpha)*d],
	     		[sin(q)* sin(alpha), 	cos(q)*sin(alpha), 	cos(alpha), 	cos(alpha)*d],
	     		[0,			0,			0,		1]
		   ])
  	return TF

#    print 'applying transforms'

    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(DH_Table)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(DH_Table)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(DH_Table)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(DH_Table)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(DH_Table)
    T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(DH_Table)

    T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE

#    print 'transforms applied'

    # Extract end-effector position and orientation from request
    # px, py, pz = end-effector position
    # roll, pitch, yaw = end-effector orientation

#    print 'applying end effector position and orientation'

    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z
    print('pose_x',req.poses[x].position.x)
    print('pose_y',req.poses[x].position.y)
    print('pose_z',req.poses[x].position.z)

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
			req.poses[x].orientation.x, req.poses[x].orientation.y,
			req.poses[x].orientation.z, req.poses[x].orientation.w])

    print('orient_x',req.poses[x].orientation.x)
    print('orient_y',req.poses[x].orientation.y)
    print('orient_z',req.poses[x].orientation.z)
    print('orient_w',req.poses[x].orientation.w)

#    print 'end effector position and orientation applied'

    # Find EE rotation matrix
    # Define RPY roation matrices
    # http://planning.cs.uiuc.edu/node102.html

#    print 'applying EE rotation matrix'

    r, p , y = symbols('r p y')

    ROT_x = Matrix([
		[1, 	0 , 		0],
		[0, 	cos(r), 	-sin(r)],
   		[0, 	sin(r), 	cos(r)]]) # ROLL

    ROT_y = Matrix([
		[cos(p), 	0 , 	sin(p)],
		[0, 		1, 	0],
   		[-sin(p), 	0, 	cos(p)]]) # PITCH (CHANGED!)

    ROT_z = Matrix([
		[cos(y), 	-sin(y), 	0],
		[sin(y), 	cos(y), 	0],
		[0, 		0, 		1]]) # YAW

    ROT_EE = ROT_z * ROT_y * ROT_x
    print('ROT_EE1',ROT_EE)
    Rot_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))
    print('ROT_Err',Rot_Error)

    ROT_EE = ROT_EE * Rot_Error
    print('ROT_EE2',ROT_EE)
    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})
    print('ROT_EE3',ROT_EE)
    EE = Matrix([[px], [py], [pz]])
    print('EE_matrix:',EE)
#    print 'EE rotation matrix applied'

    WC = EE - (0.303) * ROT_EE[:,2]
    print('WC',WC)
    theta1 = atan2(WC[1], WC[0])

#    print 'theta 1 calculated'

    # SSS triangle for theta2 and theta3

    side_a = 1.501
    side_b = sqrt(pow(sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35, 2) + pow((WC[2] - 0.75), 2)) #CHANGED!!!

    side_c = 1.25

    angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) / (2 * side_b * side_c))
    angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) / (2 * side_a * side_c))
    angle_c = acos((side_a * side_a + side_b * side_b - side_c * side_c ) / (2 * side_a * side_b))

    theta2 = pi/2. - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35) #(CHANGED!!!)
    theta3 = pi/2. - (angle_b + 0.036) # 0.036 accounts for sag in link4 of -0.054m
 
#    print 'theta 2 and 3 calculated'

    print('T0_1:',T0_1[0:3,0:3])
    print('T1_2:',T1_2[0:3,0:3])
    print('T2_3:',T2_3[0:3,0:3])

    R0_3 = T0_1[0:3,0:3] * T1_2[0:3,0:3] * T2_3[0:3,0:3]
    print('R0_3_pre:',R0_3)
    R0_3 = R0_3.evalf(subs={q1: theta1, q2:theta2, q3: theta3})
    print('R0_3:',R0_3)
    print('transpose:',R0_3.transpose())
    print('ROT_EE:', ROT_EE)
    R3_6 = R0_3.transpose() * ROT_EE
    print('R3_6:',R3_6)

    # Euler angles from rotation matrix
    print('theta4_ang',R3_6[2,2], -R3_6[0,2])
    theta4 = atan2(R3_6[2,2], -R3_6[0,2])
    theta5 = atan2(sqrt(R3_6[0,2]*R3_6[0,2] + R3_6[2,2]*R3_6[2,2]), R3_6[1,2])
    theta6 = atan2(-R3_6[1,1], R3_6[1,0]) 

#    print 'theta 4, 5 and 6 calculated'

    print ('theta1:',theta1)
    print ('theta2:',theta2)
    print ('theta3:',theta3)
    print ('theta4:',theta4)
    print ('theta5:',theta5)
    print ('theta6:',theta6)



    ##
    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!

    FK = T0_EE.evalf(subs={q1: theta1, q2:theta2, q3:theta3, q4:theta4, q5:theta5, q6:theta6})

    print 'forward kinematics applied'

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1], WC[2]] # <--- Load your calculated WC values in this array
    your_ee = [FK[0,3], FK[1,3], FK[2,3]] # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    print 'your_wc and your_ee applied'

    ## Error analysis
    print ("\nTotal run time to calculate joint angles from pose is %04.4f seconds" % (time()-start_time))

    # Find WC error
    if not(sum(your_wc)==3):
        wc_x_e = abs(your_wc[0]-test_case[1][0])
        wc_y_e = abs(your_wc[1]-test_case[1][1])
        wc_z_e = abs(your_wc[2]-test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print ("\nWrist error for x position is: %04.8f" % wc_x_e)
        print ("Wrist error for y position is: %04.8f" % wc_y_e)
        print ("Wrist error for z position is: %04.8f" % wc_z_e)
        print ("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1-test_case[2][0])
    t_2_e = abs(theta2-test_case[2][1])
    t_3_e = abs(theta3-test_case[2][2])
    t_4_e = abs(theta4-test_case[2][3])
    t_5_e = abs(theta5-test_case[2][4])
    t_6_e = abs(theta6-test_case[2][5])
    print ("\nTheta 1 error is: %04.8f" % t_1_e)
    print ("Theta 2 error is: %04.8f" % t_2_e)
    print ("Theta 3 error is: %04.8f" % t_3_e)
    print ("Theta 4 error is: %04.8f" % t_4_e)
    print ("Theta 5 error is: %04.8f" % t_5_e)
    print ("Theta 6 error is: %04.8f" % t_6_e)
    print ("\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print (" ")

    # Find FK EE error
    if not(sum(your_ee)==3):
        ee_x_e = abs(your_ee[0]-test_case[0][0][0])
        ee_y_e = abs(your_ee[1]-test_case[0][0][1])
        ee_z_e = abs(your_ee[2]-test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
	print ("\nEnd effector error for x position is: %04.8f" % ee_x_e)
	print ("End effector error for y position is: %04.8f" % ee_y_e)
	print ("End effector error for z position is: %04.8f" % ee_z_e)
	print ("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#23
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    ########################################################################################
    ##

    ## Insert IK code here!

    # Create symbols
    # Twist angle: alpha(i-1) = angle between Zi-1 to Zi measured about Xi-1
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')
    # Link length: a(i-1) = distance from Zi-1 to Zi measured along Xi-1
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')  # link length
    # Offset length: d(i) = distance from Xi-1 to Xi measured along Zi
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')  # link offset
    # Joint angle: q(i) = angle between Xi-1 to Xi measured about Zi
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')

    # Create Modified DH parameters
    dh = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        q1: q1,
        alpha1: -pi / 2.,
        a1: 0.35,
        d2: 0,
        q2: q2 - pi / 2.,
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alpha3: -pi / 2.,
        a3: -0.054,
        d4: 1.5,
        q4: q4,
        alpha4: pi / 2.,
        a4: 0,
        d5: 0,
        q5: q5,
        alpha5: -pi / 2.,
        a5: 0,
        d6: 0,
        q6: q6,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    # Define Modified DH Transformation matrix
    def tf_matrix(alpha, a, d, q):
        return Matrix([[cos(q), -sin(q), 0, a],
                       [
                           sin(q) * cos(alpha),
                           cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d
                       ],
                       [
                           sin(q) * sin(alpha),
                           cos(q) * sin(alpha),
                           cos(alpha),
                           cos(alpha) * d
                       ], [0, 0, 0, 1]])

    # Create individual transformation matrices
    T0_1 = tf_matrix(alpha0, a0, d1, q1).subs(dh)
    T1_2 = tf_matrix(alpha1, a1, d2, q2).subs(dh)
    T2_3 = tf_matrix(alpha2, a2, d3, q3).subs(dh)
    T3_4 = tf_matrix(alpha3, a3, d4, q4).subs(dh)
    T4_5 = tf_matrix(alpha4, a4, d5, q5).subs(dh)
    T5_6 = tf_matrix(alpha5, a5, d6, q6).subs(dh)
    T6_EE = tf_matrix(alpha6, a6, d7, q7).subs(dh)
    # Extract rotation matrices from the transformation matrices
    T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE

    ### Get end-effector(EE) position & orientation
    i = 0
    req_pos = req.poses[i].position
    req_ori = req.poses[i].orientation

    px = req_pos.x
    py = req_pos.y
    pz = req_pos.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
        [req_ori.x, req_ori.y, req_ori.z, req_ori.w])

    ### Defince end-effector(EE) rotation matrix
    r, p, y = symbols('r p y')

    ROT_x = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r), cos(r)]])

    ROT_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0, cos(p)]])

    ROT_z = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0, 1]])

    ROT_EE = ROT_z * ROT_y * ROT_x

    ### Correction for the difference between URDF and DH convention
    ROT_Corr = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))
    ROT_EE = ROT_EE * ROT_Corr

    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

    # Calculate joint angles using Geometric IK method
    # EE and WC positions
    EE = Matrix([[px], [py], [pz]])
    WC = EE - (0.303) * ROT_EE[:, 2]

    # Calculte joint angles using the IK method
    theta1 = atan2(WC[1], WC[0])

    # the triangle for theta2, theta3 and WC
    side_a = 1.501
    side_b = sqrt(
        pow((sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35), 2) +
        pow((WC[2] - 0.75), 2))
    side_c = 1.25

    #  cos law
    angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) /
                   (2 * side_b * side_c))
    angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) /
                   (2 * side_a * side_c))

    theta2 = pi / 2 - angle_a - atan2(
        WC[2] - 0.75,
        sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35)
    theta3 = pi / 2 - (angle_b + 0.036
                       )  # 0.036 accounts for sag in link4 of -0.054m

    R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    R3_6 = R0_3.inv("LU") * ROT_EE

    # Euler angles from rotation matrix
    theta4 = atan2(R3_6[2, 2], -R3_6[0, 2])
    theta5 = atan2(sqrt(R3_6[0, 2] * R3_6[0, 2] + R3_6[2, 2] * R3_6[2, 2]),
                   R3_6[1, 2])
    theta6 = atan2(-R3_6[1, 1], R3_6[1, 0])

    ##
    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!
    FK = T0_EE.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # <--- Load your calculated WC values in this array
    your_ee = [
        FK[0, 3], FK[1, 3], FK[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#24
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    ########################################################################################
    ##

    ## Insert IK code here!

    global dh_model
    dh_model.init_variables()

    # DH Parameters

    dh_model.init_dh_parameters()

    # Create invididual transformation matrices

    dh_model.init_transform_matrices()

    # Exctract end-effector position and orientation from request

    # px, py, pz = end-effector position
    # roll, pitch, yaw = end-effector orientation
    px, py, pz = get_position(req.poses[x])

    (roll, pitch, yaw) = get_euler(req.poses[x])

    ROT_EE = dh_model.get_rot_end_effector()
    # More information can be found in KR210 Forward Kinematics section

    Rot_Error = dh_model.get_rot_error(radians(180), radians(-90))

    ROT_EE = ROT_EE * Rot_Error
    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

    EE = Matrix([[px], [py], [pz]])

    WC = EE - (0.303) * ROT_EE[:, 2]

    # Calculate joint angles using Geometric IK method
    # More information can be found in the Inverse Kinematics with Kuka KR210
    theta1 = atan2(WC[1], WC[0])

    # SSS triangle for theta 2 and theta3
    side_a = 1.501
    side_b = sqrt(
        pow((sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35), 2) +
        pow((WC[2] - 0.75), 2))
    side_c = 1.25

    angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) /
                   (2 * side_b * side_c))
    angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) /
                   (2 * side_a * side_c))
    angle_c = acos((side_a * side_a + side_b * side_b - side_c * side_c) /
                   (2 * side_a * side_b))

    theta2 = pi / 2 - angle_a - atan2(
        WC[2] - 0.75,
        sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35)
    theta3 = pi / 2 - (angle_b + 0.036
                       )  # 0.036 accounts for sag in link4 of -0.054m

    R0_3 = dh_model.T0_1[0:3, 0:3] * dh_model.T1_2[0:3,
                                                   0:3] * dh_model.T2_3[0:3,
                                                                        0:3]
    R0_3 = R0_3.evalf(subs={
        dh_model.q1: theta1,
        dh_model.q2: theta2,
        dh_model.q3: theta3
    })

    R3_6 = R0_3.transpose() * ROT_EE

    # Euler angles from rotation matrix
    # More information can be found in the Euler Angles from a Rotation Matrix section

    theta4 = atan2(R3_6[2, 2], -R3_6[0, 2])
    a = sqrt(R3_6[0, 2] * R3_6[0, 2] + R3_6[2, 2] * R3_6[2, 2])
    theta5 = atan2(a, R3_6[1, 2])
    theta6 = atan2(-R3_6[1, 1], R3_6[1, 0])

    ## Ending at: Populate response for the IK request

    ##
    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!
    FK = dh_model.T0_EE.evalf(
        subs={
            dh_model.q1: theta1,
            dh_model.q2: theta2,
            dh_model.q3: theta3,
            dh_model.q4: theta4,
            dh_model.q5: theta5,
            dh_model.q6: theta6
        })

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # <--- Load your calculated WC values in this array
    your_ee = [
        FK[0, 3], FK[1, 3], FK[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#25
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    ########################################################################################
    ##

    ## Insert IK code here!

    # Define DH param symbols
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')  #link offset
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')  #link length
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')  # twist angle

    # Joint Angle Symbols
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')

    # Modified DH parameters
    DH_Table = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        q1: q1,
        alpha1: rad(-90),
        a1: 0.35,
        d2: 0,
        q2: -rad(90) + q2,
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alpha3: rad(-90),
        a3: -0.054,
        d4: 1.50,
        q4: q4,
        alpha4: rad(90),
        a4: 0,
        d5: 0,
        q5: q5,
        alpha5: rad(-90),
        a5: 0,
        d6: 0,
        q6: q6,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    # Create individual transformation matrices
    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(DH_Table)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(DH_Table)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(DH_Table)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(DH_Table)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(DH_Table)
    T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(DH_Table)

    T0_EE = simplify(T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE)

    print("\nTime taken to create transformation matrices: %04.4f seconds" %
          (time() - start_time))

    # ----- IK Code -------

    # Extract end-effector position and orientation from request
    # px,py,pz = end-effector position
    # roll, pitch, yaw = end-effector orientation
    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    # Find EE rotation matrix
    # Define RPY rotation matrices
    # (Further reading got from walkthrough)
    # http://planning.cs.uiuc.edu/node102.html

    r, p, y = symbols('r p y')

    ROT_x = rot_x(r)  #Roll
    ROT_y = rot_y(p)  #Pitch
    ROT_z = rot_z(y)  #Yaw
    # ROT_EE = ROT_x * ROT_y * ROT_z
    ROT_EE = ROT_z * ROT_y * ROT_x

    #Calculate Rotation Error
    ROT_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))

    ROT_EE = ROT_EE * ROT_Error
    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

    EE = Matrix([[px], [py], [pz]])

    WC = EE - (0.303) * ROT_EE[:, 2]

    # Calculate Joint Angles using Geometric IK Method
    theta1 = atan2(WC[1], WC[0])

    # SSS triangle for theta2 and theta3
    side_a = 1.501  # Found by using "measure" tool in RViz.
    side_b = sqrt(
        pow((sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35), 2) +
        pow((WC[2] - 0.75), 2))
    side_c = 1.25  # Length of joint 1 to 2

    angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) /
                   (2 * side_b * side_c))
    angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) /
                   (2 * side_a * side_c))
    angle_c = acos((side_a * side_a + side_b * side_b - side_c * side_c) /
                   (2 * side_a * side_b))

    theta2 = pi / 2 - angle_a - atan2(
        WC[2] - 0.75,
        sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35)
    theta3 = pi / 2 - (angle_b + 0.036
                       )  # 0.036 account for sag in link4 of -0.054m

    R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    R3_6 = R0_3.inv("LU") * ROT_EE

    # Euler Angles from rotation matrix
    theta5 = atan2(sqrt(R3_6[0, 2] * R3_6[0, 2] + R3_6[2, 2] * R3_6[2, 2]),
                   R3_6[1, 2])
    # select best solution based on theta5
    if (theta5 > pi):
        theta4 = atan2(-R3_6[2, 2], R3_6[0, 2])
        theta6 = atan2(R3_6[1, 1], -R3_6[1, 0])
    else:
        theta4 = atan2(R3_6[2, 2], -R3_6[0, 2])
        theta6 = atan2(-R3_6[1, 1], R3_6[1, 0])

    ##
    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!
    FK = T0_EE.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # <--- Load your calculated WC values in this array
    your_ee = [
        FK[0, 3], FK[1, 3], FK[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#26
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    ########################################################################################
    ##
    ## Define DH param symbols

    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')

    r1, r2, r3 = symbols(
        'r1:4')  #Variables the roll, pitch and yaw will be put into to

    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')

    # Joint angle symbols
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')  #The thetas
    # Modified DH params
    s = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        alpha1: -pi / 2,
        a1: 0.35,
        d2: 0,
        q2: q2 - pi / 2,
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        alpha3: -pi / 2,
        a3: -0.054,
        d4: 1.50,
        alpha4: -pi / 2,
        a4: 0,
        d5: 0,
        alpha5: -pi / 2,
        a5: 0,
        d6: 0,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    # Define Modified DH Transformation matrix
    def TF_Matrix(alpha, a, d, q):
        TF = Matrix([[cos(q), -sin(q), 0, a],
                     [
                         sin(q) * cos(alpha),
                         cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d
                     ],
                     [
                         sin(q) * sin(alpha),
                         cos(q) * sin(alpha),
                         cos(alpha),
                         cos(alpha) * d
                     ], [0, 0, 0, 1]])
        return TF

    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(s)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(s)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(s)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(s)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(s)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(s)
    T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(s)

    T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE

    # Extract end-effector position and orientation from request
    # px,py,pz = end-effector position
    # roll, pitch, yaw = end-effector orientation
    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    #Find EE rotation
    #RPY rotation matrices

    r, p, y = symbols('r p y')
    ROT_x = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r),
                                                      cos(r)]])  #ROLL

    ROT_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0,
                                                     cos(p)]])  #Pitch

    ROT_z = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0,
                                                                1]])  #Yaw

    ROT_EE = ROT_z * ROT_y * ROT_x
    #Rotation Error correction

    Rot_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))
    ROT_EE = ROT_EE * Rot_Error
    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

    EE = Matrix([[px], [py], [pz]])

    WC = EE - (.303) * ROT_EE[:, 2]

    #Calculate joint angles using Geometrix IK method
    #theta1 = atan2(WC[1],WC[0])
    #Calculate IK
    theta1 = atan2(py, px)

    j2z = 0.75
    j2x = 0.35 * cos(theta1)
    j2y = 0.35 * sin(theta1)

    j2pz = j2z - pz

    blength = sqrt(
        np.square(px - j2x) + np.square(py - p2y) + np.square(pz - j2z))

    j3p = sqrt(np.square(2.53 - 0.35) + np.square(1.946 - 2.0))

    angle1 = asin(j2pz / blength)

    f1 = acos((np.square(1.25) + np.square(blength) - np.square(j3p)) /
              (2 * 1.25 * blength))

    theta2 = np.pi / 2 + g1 - f1

    j3z = j2z + (1.25 * cos(theta2))

    s = j3z - 0.054 - pz

    theta3 = asin(s / j3p) - theta2

    #    #Calculate theta2 and theta3 while theta 4,5,6 = 0
    #    side_a = 1.25
    #    side_b = 1.80452
    #    side_l = sqrt((px - .35)*(px - .35) + (pz - .75)*(pz - .75))
    #
    #    #Once the triangle is built we cans uses the law of cosins to find the angles
    #    #SSS triangle
    #    angle_b = acos((side_a * side_a + side_l * side_l - side_b * side_b) / (2 * side_a * side_l))
    #    angle_l = acos((side_a * side_a + side_b * side_b - side_l * side_l) / (2 * side_a * side_b))
    #
    #    theta2 = pi/2 - angle_b - atan2(pz - 0.75, sqrt(px * px + py * py) - 0.35)
    #
    #    theta3 = pi/2 - (angle_l +0.036)

    #    theta4 = 0
    #    theta5 = 0
    #    theta6 = 0
    ##    #This accounts for the case when atan is greater then 1
    ##    if theta1 > 2.2:
    ##        theta1 = theta1 - pi
    #	# SSS triangle for theta2 and theta3
    #    side_a = 1.501
    #    side_b = sqrt(pow((sqrt(WC[0] * WC[0] + WC[1]*WC[1]) - 0.35),2) + pow((WC[2]-0.75),2))
    #    side_c = 1.250

    #    angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) / (2 * side_b * side_c))
    #    angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) / (2 * side_a * side_c))
    #    angle_c = acos((side_a * side_a + side_b * side_b - side_c * side_c) / (2 * side_a * side_b))

    #    theta2 = pi/2 - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35)
    #    theta3 = pi/2 - (angle_b +0.036)

    #    R0_3 = T0_1[0:3,0:3] * T1_2[0:3,0:3] * T2_3[0:3,0:3]
    #    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    #    R3_6 = R0_3.inv("LU") * ROT_EE

    #    ### Identify useful terms from rotation matrix
    #    r31 = R3_6[2,0]
    #    r11 = R3_6[0,0]
    #    r21 = R3_6[1,0]
    #    r32 = R3_6[2,1]
    #    r33 = R3_6[2,2]

    #	# Euler angles from rotation matrix
    ##    first, second, third = tf.transformations.euler_from_matrix(np.array(R3_6).astype(np.float64), "ryzy")
    ##
    ##    theta4 = first
    ##    theta5 = second
    ##    theta6 = third

    ##    theta4 = atan2(r21,r11)
    ##    theta5 = atan2(sqrt(r11 * r11 +r21*r21),r31)
    ##    theta6 = atan2(r32,r33)

    #    theta4 = atan2(R3_6[2,2],-R3_6[0,2])
    #    theta5 = atan2(sqrt(R3_6[0,2]*R3_6[0,2]+R3_6[2,2]*R3_6[2,2]),R3_6[1,2])
    #    theta6 = atan2(-R3_6[1,1],R3_6[1,0])

    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    FK = T0_EE.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # <--- Load your calculated WC values in this array
    your_ee = [
        FK[0, 3], FK[1, 3], FK[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print(
            "\nWrist error for x position is: {0:4.8f} True Value: {1: 4.8f}    Your value: {2:4.8f}"
            .format(np.float64(wc_x_e), np.float64(test_case[1][0]),
                    np.float64(your_wc[0])))
        print(
            "Wrist error for y position is: {0:4.8f} True Value: {1: 4.8f}    Your value: {2:4.8f}"
            .format(np.float64(wc_y_e), np.float64(test_case[1][1]),
                    np.float64(your_wc[1])))
        print(
            "Wrist error for z position is: {0:4.8f} True Value: {1: 4.8f}    Your value: {2:4.8f}"
            .format(np.float64(wc_z_e), np.float64(test_case[1][2]),
                    np.float64(your_wc[2])))

        print("Overall wrist offset is: %04.8f units" % wc_offset)

# Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])

    #More information about troubleshooting.

    print(
        "\nTheta 1 error is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
        .format(np.float64(t_1_e), np.float64(test_case[2][0]),
                np.float64(theta1)))
    print(
        "Theta 2 error is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
        .format(np.float64(t_2_e), np.float64(test_case[2][1]),
                np.float64(theta2)))
    print(
        "Theta 3 error is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
        .format(np.float64(t_3_e), np.float64(test_case[2][2]),
                np.float64(theta3)))
    print(
        "Theta 4 error is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
        .format(np.float64(t_4_e), np.float64(test_case[2][3]),
                np.float64(theta4)))
    print(
        "Theta 5 error is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
        .format(np.float64(t_5_e), np.float64(test_case[2][4]),
                np.float64(theta5)))
    print(
        "Theta 6 error is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
        .format(np.float64(t_6_e), np.float64(test_case[2][5]),
                np.float64(theta6)))

    ##    print ("\nTheta 1 error is: %04.8f    Truth value: %14.8f    Your value: %24.8f" % t_1_e, test_case[2][0], theta1 )
    #    print ("Theta 2 error is: %04.8f" % t_2_e)
    #    print ("Theta 3 error is: %04.8f" % t_3_e)
    #    print ("Theta 4 error is: %04.8f" % t_4_e)
    #    print ("Theta 5 error is: %04.8f" % t_5_e)
    #    print ("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
		   \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
		   \nconfirm whether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)

        print(
            "\nEnd effector error for x position is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
            .format(np.float64(ee_x_e), np.float64(test_case[0][0][0]),
                    np.float64(your_ee[0])))
        print(
            "End effector error for y position is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
            .format(np.float64(ee_y_e), np.float64(test_case[0][0][1]),
                    np.float64(your_ee[1])))
        print(
            "End effector error for z position is: {0:4.8f}    Truth value: {1:4.8f}    Your value: {2:4.8f}"
            .format(np.float64(ee_z_e), np.float64(test_case[0][0][2]),
                    np.float64(your_ee[2])))
        #		print ("\nEnd effector error for x position is: {0:4.8f}".format(np.float64(ee_x_e)))
        #		print ("End effector error for y position is: %04.8f" % ee_y_e)
        #		print ("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#27
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    ########################################################################################
    ##

    #DH param symbols
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')
    alp0, alp1, alp2, alp3, alp4, alp5, alp6 = symbols('alp0:7')

    #joint angles
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')

    DH_tab = {
        alp0: 0.,
        a0: 0.0,
        d1: 0.75,
        q1: q1,
        alp1: -pi / 2.,
        a1: 0.35,
        d2: 0,
        q2: -pi / 2. + q2,
        alp2: 0.,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alp3: -pi / 2.,
        a3: -0.054,
        d4: 1.5,
        q4: q4,
        alp4: pi / 2.,
        a4: 0,
        d5: 0,
        q5: q5,
        alp5: -pi / 2.,
        a5: 0,
        d6: 0,
        q6: q6,
        alp6: 0.,
        a6: 0,
        d7: 0.303,
        q7: q7,
    }

    #DH Transformation matrix
    def TF_Matrix(alp, a, d, q):
        TF = Matrix(
            [[cos(q), -sin(q), 0, a],
             [sin(q) * cos(alp),
              cos(q) * cos(alp), -sin(alp), -sin(alp) * d],
             [sin(q) * sin(alp),
              cos(q) * sin(alp),
              cos(alp),
              cos(alp) * d], [0, 0, 0, 1]])
        return TF

    #Individual transformation matrices
    T0_1 = TF_Matrix(alp0, a0, d1, q1).subs(DH_tab)
    T1_2 = TF_Matrix(alp1, a1, d2, q2).subs(DH_tab)
    T2_3 = TF_Matrix(alp2, a2, d3, q3).subs(DH_tab)
    T3_4 = TF_Matrix(alp3, a3, d4, q4).subs(DH_tab)
    T4_5 = TF_Matrix(alp4, a4, d5, q5).subs(DH_tab)
    T5_6 = TF_Matrix(alp5, a5, d6, q6).subs(DH_tab)
    T6_E = TF_Matrix(alp6, a6, d7, q7).subs(DH_tab)

    T0_EE = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_E

    #Get End-effector position
    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    #Get roll-pitch-yaw
    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    #Get Rotation Matrices from roll-pitch-yaw

    r, p, y = symbols('r p y')

    ROT_x = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r), cos(r)]])

    ROT_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0, cos(p)]])

    ROT_z = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0, 1]])

    ROT_EE = ROT_z * ROT_y * ROT_x

    #Include Rotation error Correction
    Rot_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))

    ROT_EE = ROT_EE * Rot_Error
    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

    EE = Matrix([[px], [py], [pz]])

    # Calculate Wrist center: Using following equation
    #                              _   _       _    _             _   _
    #   0         0            0  |  0  |     |  Px  |        0  |  0  |
    #    r      =  r      -  d. R |  0  |  =  |  Py  |   -  d. R |  0  |
    #     WC/0      EE/0       6  |_ 1 _|     |_ Pz _|        6  |_ 1 _|
    #

    WC = EE - (0.303) * ROT_EE[:, 2]

    ## Insert IK code here!
    theta1 = atan2(WC[1], WC[0])

    #SSS triangle for theta2 and theta3
    side_a = 1.501
    side_b = sqrt(
        pow((sqrt(WC[0]**2 + WC[1]**2) - 0.35), 2) + pow((WC[2] - 0.75), 2))
    side_c = 1.25

    angle_a = acos((side_b**2 + side_c**2 - side_a**2) / (2 * side_b * side_c))
    angle_b = acos((side_a**2 + side_c**2 - side_b**2) / (2 * side_a * side_c))
    angle_c = acos((side_a**2 + side_b**2 - side_c**2) / (2 * side_a * side_b))

    theta2 = pi / 2. - angle_a - atan2(WC[2] - 0.75,
                                       sqrt(WC[0]**2 + WC[1]**2) - 0.35)
    theta3 = pi / 2. - (angle_b + 0.036
                        )  # 0.036 because of sag in link4 i.e. -0.054m

    R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    #R3_6 = R0_3.inv("LU") * ROT_EE #Transpose is same as inverse of rotation matrix
    R3_6 = R0_3.T * ROT_EE

    theta4 = atan2(R3_6[2, 2], -R3_6[0, 2])
    theta5 = atan2(sqrt(R3_6[0, 2]**2 + R3_6[2, 2]**2), R3_6[1, 2])
    theta6 = atan2(-R3_6[1, 1], R3_6[1, 0])

    ##
    ########################################################################################

    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!
    FK = T0_EE.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # <--- Load your calculated WC values in this array
    your_ee = [
        FK[0, 3], FK[1, 3], FK[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**2These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**2")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#28
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()
    ########################################################################################
    ## Insert IK code here starting at: Define DH parameter symbols

    ## YOUR CODE HERE!
    ## Create symbols for joint variables
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')  # theta 1
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')

    ##KUKA KR210
    s = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        q1: q1,
        alpha1: -pi / 2.,
        a1: 0.35,
        d2: 0,
        q2: q2 - pi / 2.,
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alpha3: -pi / 2.,
        a3: -0.054,
        d4: 1.5,
        q4: q4,
        alpha4: pi / 2.,
        a4: 0,
        d5: 0,
        q5: q5,
        alpha5: -pi / 2.,
        a5: 0,
        d6: 0,
        q6: q6,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    ##Homogeneous Transforms
    """
    T0_1 = Matrix([[             cos(q1),            -sin(q1),            0,              a0],
		   [ sin(q1)*cos(alpha0), cos(q1)*cos(alpha0), -sin(alpha0), -sin(alpha0)*d1],
		   [ sin(q1)*sin(alpha0), cos(q1)*sin(alpha0),  cos(alpha0),  cos(alpha0)*d1],
		   [                   0,                   0,            0,               1]])
    T0_1 = T0_1.subs(s)
    T1_2 = Matrix([[             cos(q2),            -sin(q2),            0,              a1],
                   [ sin(q2)*cos(alpha1), cos(q2)*cos(alpha1), -sin(alpha1), -sin(alpha1)*d2],
                   [ sin(q2)*sin(alpha1), cos(q2)*sin(alpha1),  cos(alpha1),  cos(alpha1)*d2],
                   [                   0,                   0,            0,               1]])
    T1_2 = T1_2.subs(s)
    T2_3 = Matrix([[             cos(q3),            -sin(q3),            0,              a2],
                   [ sin(q3)*cos(alpha2), cos(q3)*cos(alpha2), -sin(alpha2), -sin(alpha2)*d3],
                   [ sin(q3)*sin(alpha2), cos(q3)*sin(alpha2),  cos(alpha2),  cos(alpha2)*d3],
                   [                   0,                   0,            0,               1]])
    T2_3 = T2_3.subs(s)
    T3_4 = Matrix([[             cos(q4),            -sin(q4),            0,              a3],
                   [ sin(q4)*cos(alpha3), cos(q4)*cos(alpha3), -sin(alpha3), -sin(alpha3)*d4],
                   [ sin(q4)*sin(alpha3), cos(q4)*sin(alpha3),  cos(alpha3),  cos(alpha3)*d4],
                   [                   0,                   0,            0,               1]])
    T3_4 = T3_4.subs(s)
    T4_5 = Matrix([[             cos(q5),            -sin(q5),            0,              a4],
                   [ sin(q5)*cos(alpha4), cos(q5)*cos(alpha4), -sin(alpha4), -sin(alpha4)*d5],
                   [ sin(q5)*sin(alpha4), cos(q5)*sin(alpha4),  cos(alpha4),  cos(alpha4)*d5],
                   [                   0,                   0,            0,               1]])
    T4_5 = T4_5.subs(s)
    T5_6 = Matrix([[             cos(q6),            -sin(q6),            0,              a5],
                   [ sin(q6)*cos(alpha5), cos(q6)*cos(alpha5), -sin(alpha5), -sin(alpha5)*d6],
                   [ sin(q6)*sin(alpha5), cos(q6)*sin(alpha5),  cos(alpha5),  cos(alpha5)*d6],
                   [                   0,                   0,            0,               1]])
    T5_6 = T5_6.subs(s)
    T6_G = Matrix([[             cos(q7),            -sin(q7),            0,              a6],
                   [ sin(q7)*cos(alpha6), cos(q7)*cos(alpha6), -sin(alpha6), -sin(alpha6)*d7],
                   [ sin(q7)*sin(alpha6), cos(q7)*sin(alpha6),  cos(alpha6),  cos(alpha6)*d7],
                   [                   0,                   0,            0,               1]])
    T6_G = T6_G.subs(s)
    """

    def TF_Matrix(alpha, a, d, q):
        TF = Matrix([[cos(q), -sin(q), 0, a],
                     [
                         sin(q) * cos(alpha),
                         cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d
                     ],
                     [
                         sin(q) * sin(alpha),
                         cos(q) * sin(alpha),
                         cos(alpha),
                         cos(alpha) * d
                     ], [0, 0, 0, 1]])
        return TF

    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(s)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(s)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(s)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(s)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(s)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(s)
    T6_G = TF_Matrix(alpha6, a6, d7, q7).subs(s)
    print(simplify(T3_4 * T4_5 * T5_6))

    ## Composition of Homogenious Transforms
    #T0_2 = simplify(T0_1 * T1_2) # base_link to link_2
    #T0_3 = simplify(T0_2 * T2_3) # base_link to link_3
    #T0_4 = simplify(T0_3 * T3_4) # base_link to link_4
    #T0_5 = simplify(T0_4 * T4_5) # base_link to link_5
    #T0_6 = simplify(T0_5 * T5_6) # base_link to link_6
    #T0_G = simplify(T0_6 * T6_G) # base_link to link_G
    T0_G = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_G

    ## Correction needed to account for orientation difference between definition of
    # gripper  link on URDF vs DH Convention

    ## Numerically evaluate transforms
    #print("T0_1 = ",T0_1.evalf(subs={q1: 0, q2: 0, q3: 0, q4: 0, q5: 0, q6: 0}))
    #print("T0_2 = ",T0_2.evalf(subs={q1: 0, q2: 0, q3: 0, q4: 0, q5: 0, q6: 0}))
    #print("T0_3 = ",T0_3.evalf(subs={q1: 0, q2: 0, q3: 0, q4: 0, q5: 0, q6: 0}))
    #print("T0_4 = ",T0_4.evalf(subs={q1: 0, q2: 0, q3: 0, q4: 0, q5: 0, q6: 0}))
    #print("T0_5 = ",T0_5.evalf(subs={q1: 0, q2: 0, q3: 0, q4: 0, q5: 0, q6: 0}))
    #print("T0_6 = ",T0_6.evalf(subs={q1: 0, q2: 0, q3: 0, q4: 0, q5: 0, q6: 0}))
    #print("T0_G = ",T0_G.evalf(subs={q1: 0, q2: 0, q3: 0, q4: 0, q5: 0, q6: 0}))

    ## Total Homogeneous Transform between base_link and gripper_link with
    # Orientation correction applied
    #T_total = simplify(T0_G * R_corr)

    ## Calculate wrist center
    EE_pos = Matrix([
        req.poses[x].position.x, req.poses[x].position.y,
        req.poses[x].position.z
    ])
    #quaternion = (req.poses[x].orientation.x,
    #              req.poses[x].orientation.y,
    # 	 	  req.poses[x].orientation.z,
    #		  req.poses[x].orientation.w)
    #EE_orientation =  tf.transformations.euler_from_quaternion(quaternion)

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    r, p, y = symbols('r p y')
    X_rot = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r), cos(r)]])
    Y_rot = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0, cos(p)]])
    Z_rot = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0, 1]])
    rrpy = Z_rot * Y_rot * X_rot
    #print("ROTEEEASDAS: ",otEE)

    #rotEE = Z_rot.subs(y, yaw) * Y_rot.subs(p, pitch) * X_rot.subs(r, roll)
    #print("ROTEEEASDAS: ",rotEE)

    rrpy = rrpy.subs({'r': roll, 'p': pitch, 'y': yaw})
    rotError = Z_rot.subs(y, radians(180)) * Y_rot.subs(p, radians(-90))

    #EE_X_rot = X_rot.subs({roll: EE_orientation[0]})
    #EE_Y_rot = Y_rot.subs({pitch: EE_orientation[1]})
    #EE_Z_rot = Z_rot.subs({yaw: EE_orientation[2]})

    #R_z = Z_rot.subs({yaw: np.pi})
    #R_y = Y_rot.subs({pitch: -np.pi/2})
    #R_corr = simplify(R_z * R_y)
    #temp = rotEE
    rotEE = rrpy * rotError

    #rotEE = rotEE.subs({'r': roll, 'p': pitch, 'y': yaw})
    print("rotEE", rotEE)
    #T_total = T0_G*R_corr

    #WC = EE_pos - .303 * rotEE[:,2]
    w_x = EE_pos[0] - .303 * rotEE[0, 2]
    w_y = EE_pos[1] - .303 * rotEE[1, 2]
    w_z = EE_pos[2] - .303 * rotEE[2, 2]

    theta1 = atan(w_y / w_x)

    J2_WC_x = abs(sqrt(w_x**2 + w_y**2) - .35)
    J2_WC_y = abs(w_z - .75)

    A = 1.501
    B = sqrt(J2_WC_x**2 + J2_WC_y**2)
    C = 1.25

    a = acos((-A**2 + B**2 + C**2) / (2 * B * C))
    theta2 = atan(J2_WC_x / J2_WC_y) - a
    b = acos((A**2 + C**2 - B**2) / (2 * A * C))
    theta3 = np.pi / 2 - b - .036
    print("theta1,2,3: ", theta1, theta2, theta3)
    R0_3 = T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3]
    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    R3_6 = R0_3.inv("LU") * rotEE

    print("asdasfa", R0_3 * R0_3.inv("LU"))
    theta4 = atan2(R3_6[2, 2], -R3_6[0, 2])
    theta5 = atan2(sqrt(R3_6[0, 2] * R3_6[0, 2] + R3_6[2, 2] * R3_6[2, 2]),
                   R3_6[1, 2])
    theta6 = atan2(-R3_6[1, 1], R3_6[1, 0])
    print("theta4,5,6: ", theta4, theta5, theta6)

    ## Ending at: Populate response for the IK request
    ########################################################################################
    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee =
    ## (OPTIONAL) YOUR CODE HERE!

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [w_x, w_y,
               w_z]  # <--- Load your calculated WC values in this array
    ex = [-0.65, 0.45, -0.36, 0.95, 0.79, 0.49]
    ee = T0_G.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    your_ee = [
        ee[0, 3], ee[1, 3], ee[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics

    ########################################################################################

    ## Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple posisiotns. It is best to add your forward kinmeatics to \
           \nlook at the confirm wether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0
    class Position:
        def __init__(self,EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]
    class Orientation:
        def __init__(self,EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self,position,orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position,orientation)

    class Pose:
        def __init__(self,comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()
    
    ########################################################################################
    ## 
    
    print 'Creating symbols'
    # Create symbols

    # Joint angles
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')
    # Link len's
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')
    # Link offsets
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')
    # Joint twists
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols('alpha0:7')


    print 'Creating DH parameters'
    # Create Modified DH parameters

    dhParams = {alpha0: 0,      a0: 0,      d1: 0.75,   q1: q1,
                alpha1: -pi/2., a1: 0.35,   d2: 0,      q2: -pi/2. + q2,
                alpha2: 0,      a2: 1.25,   d3: 0,      q3: q3,
                alpha3: -pi/2., a3: -0.054, d4: 1.5,    q4: q4,
                alpha4: pi/2,   a4: 0,      d5: 0,      q5: q5,
                alpha5: -pi/2., a5: 0,      d6: 0,      q6: q6,
                alpha6: 0,      a6: 0,      d7: 0.303,  q7: 0}

    
    print 'Defining DH transformation matrix'
    # Define Modified DH Transformation matrix

    def dh_transform(alpha, a, d, q):
        dhtMatrix = Matrix([  [            cos(q),           -sin(q),           0,             a],
                        [ sin(q)*cos(alpha), cos(q)*cos(alpha), -sin(alpha), -sin(alpha)*d],
                        [ sin(q)*sin(alpha), cos(q)*sin(alpha),  cos(alpha),  cos(alpha)*d],
                        [                 0,                 0,           0,             1]
                    ])
        return dhtMatrix  

    print 'Creating individual transform matrices'
    # Create individual transformation matrices

    T0_1 = dh_transform(alpha0, a0, d1, q1).subs(dhParams)
    T1_2 = dh_transform(alpha1, a1, d2, q2).subs(dhParams)
    T2_3 = dh_transform(alpha2, a2, d3, q3).subs(dhParams)
    T3_4 = dh_transform(alpha3, a3, d4, q4).subs(dhParams)
    T4_5 = dh_transform(alpha4, a4, d5, q5).subs(dhParams)
    T5_6 = dh_transform(alpha5, a5, d6, q6).subs(dhParams)
    T6_7 = dh_transform(alpha6, a6, d7, q7).subs(dhParams)
    T0_7 = (T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_7)


    # Extract rotation matrices from the transformation matrices
    print 'Creating roll, pitch, and yaw rotation matrices'
    # Roll, Pitch, Yaw Symbols
    r, p , y = symbols('r p y')
    # Roll
    rotationX = Matrix([
                        [1,     0 ,       0],
                        [0, cos(r), -sin(r)],
                        [0, sin(r),  cos(r)]
                        ])
    # Pitch
    rotationY = Matrix([
                        [  cos(p),    0,  sin(p)],
                        [       0,    1,       0],
                        [ -sin(p),    0,  cos(p)]
                        ])
    # Yaw
    rotationZ = Matrix([
                        [cos(y),   -sin(y), 0],
                        [sin(y),    cos(y), 0],
                        [     0,         0, 1]
                        ])

    ROT_EE = (rotationX * rotationY * rotationZ)
    rotationErr = rotationZ.subs(y, radians(180)) * rotationY.subs(p, radians(-90))
    ROT_EE = (ROT_EE * rotationErr)


    
    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
        [req.poses[x].orientation.x, req.poses[x].orientation.y,
            req.poses[x].orientation.z, req.poses[x].orientation.w])

    ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})
    EE = Matrix([[px], [py], [pz]])
    WC = EE - (0.303) * ROT_EE[:,2]
    
    print 'Calculating theta1'
    theta1 = atan2(WC[1], WC[0])

    side_a = 1.501
    side_b = sqrt(pow(sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35, 2)+ pow((WC[2] - 0.75), 2))
    side_c = 1.25

    angle_a = acos((side_b * side_b + side_c * side_c - side_a * side_a) / (2 * side_b * side_c))
    angle_b = acos((side_a * side_a + side_c * side_c - side_b * side_b) / (2 * side_a * side_c))
    angle_c = acos((side_a * side_a + side_b * side_b - side_c * side_c ) / (2 * side_a * side_b))

    print 'Calculating theta2'
    theta2 = pi/2 - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35)
    print 'Calculating theta3'
    theta3 = pi/2 - (angle_b + 0.036)

    R0_3 = T0_1[0:3,0:3] * T1_2[0:3,0:3] * T2_3[0:3,0:3]
    R0_3 = R0_3.evalf(subs={q1: theta1, q2:theta2, q3: theta3})
    R3_6 = R0_3.transpose() * rotationErr

    print 'Calculating theta4'
    theta4 = atan2(R3_6[2,2], -R3_6[0,2])
    print 'Calculating theta5'
    theta5 = atan2(sqrt(R3_6[0,2]*R3_6[0,2] + R3_6[2,2]*R3_6[2,2]), R3_6[1,2])
    print 'Calculating theta6'
    theta6 = atan2(-R3_6[1,1], R3_6[1,0])

    print (theta1)
    print (theta2)
    print (theta3)
    print (theta4)
    print (theta5)
    print (theta6)

    ## 
    ########################################################################################
    
    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    FK = T0_7.evalf(subs={q1: theta1, q2:theta2, q3:theta3, q4:theta4, q5:theta5, q6:theta6})

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [1,1,1] # <--- Load your calculated WC values in this array
    your_ee = [1,1,1] # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print ("\nTotal run time to calculate joint angles from pose is %04.4f seconds" % (time()-start_time))

    # Find WC error
    if not(sum(your_wc)==3):
        wc_x_e = abs(your_wc[0]-test_case[1][0])
        wc_y_e = abs(your_wc[1]-test_case[1][1])
        wc_z_e = abs(your_wc[2]-test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print ("\nWrist error for x position is: %04.8f" % wc_x_e)
        print ("Wrist error for y position is: %04.8f" % wc_y_e)
        print ("Wrist error for z position is: %04.8f" % wc_z_e)
        print ("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1-test_case[2][0])
    t_2_e = abs(theta2-test_case[2][1])
    t_3_e = abs(theta3-test_case[2][2])
    t_4_e = abs(theta4-test_case[2][3])
    t_5_e = abs(theta5-test_case[2][4])
    t_6_e = abs(theta6-test_case[2][5])
    print ("\nTheta 1 error is: %04.8f" % t_1_e)
    print ("Theta 2 error is: %04.8f" % t_2_e)
    print ("Theta 3 error is: %04.8f" % t_3_e)
    print ("Theta 4 error is: %04.8f" % t_4_e)
    print ("Theta 5 error is: %04.8f" % t_5_e)
    print ("Theta 6 error is: %04.8f" % t_6_e)
    print ("\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print (" ")

    # Find FK EE error
    if not(sum(your_ee)==3):
        ee_x_e = abs(your_ee[0]-test_case[0][0][0])
        ee_y_e = abs(your_ee[1]-test_case[0][0][1])
        ee_z_e = abs(your_ee[2]-test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print ("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print ("End effector error for y position is: %04.8f" % ee_y_e)
        print ("End effector error for z position is: %04.8f" % ee_z_e)
        print ("Overall end effector offset is: %04.8f units \n" % ee_offset)
def handle_calculate_IK(req):
    rospy.loginfo("Received %s eef-poses from the plan" % len(req.poses))
    if len(req.poses) < 1:
        print "No valid poses received"

        return -1
    else:

        ## Create individual transformation matrices
        T0_1 = TF_Mat(alpha0, a0, d1, q1).subs(DH)
        T1_2 = TF_Mat(alpha1, a1, d2, q2).subs(DH)
        T2_3 = TF_Mat(alpha2, a2, d3, q3).subs(DH)
        T3_4 = TF_Mat(alpha3, a3, d4, q4).subs(DH)
        T4_5 = TF_Mat(alpha4, a4, d5, q5).subs(DH)
        T5_6 = TF_Mat(alpha5, a5, d6, q6).subs(DH)
        T6_7 = TF_Mat(alpha6, a6, d7, q7).subs(DH)

        ## Composition of Homogeneous Transforms
        ## Transform from Base link_0 to End Effector (Gripper)
        T0_7 = (T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_7)

        # Correction Needed to Account for Orientation Difference Between
        # Definition of Gripper Link_G
        # Matrix is pre-calculated to improve performance.
        R_corr = Matrix([[0, 0, 1.0, 0], [0, -1.0, 0, 0], [1.0, 0, 0, 0],
                         [0, 0, 0, 1.0]])

        # Total Homogeneous Transform Between (Base) Link_0 and (End Effector) Link_7
        # With orientation correction applied
        T0_7_corr = (T0_7 * R_corr)

        # Find EE rotation matrix RPY (Roll, Pitch, Yaw)
        r, p, y = symbols('r p y')

        # Roll
        ROT_x = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r), cos(r)]])
        # Pitch
        ROT_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0, cos(p)]])
        # Yaw
        ROT_z = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0, 1]])

        ROT_EE = ROT_z * ROT_y * ROT_x

        # Compensate for rotation discrepancy between DH parameters and Gazebo
        # Correction Needed to Account for Orientation Difference Between
        # Definition of Gripper Link_G in URDF versus DH Convention
        ROT_corr = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))
        ROT_EE = ROT_EE * ROT_corr

        # Initialize service response
        joint_trajectory_list = []
        for x in xrange(0, len(req.poses)):
            # IK code starts here
            joint_trajectory_point = JointTrajectoryPoint()

            # Extract end-effector position and orientation from request
            # px,py,pz = end-effector position
            # roll, pitch, yaw = end-effector orientation
            px = req.poses[x].position.x
            py = req.poses[x].position.y
            pz = req.poses[x].position.z
            # store EE position in a matrix
            EE = Matrix([[px], [py], [pz]])

            roll, pitch, yaw = tf.transformations.euler_from_quaternion([
                req.poses[x].orientation.x, req.poses[x].orientation.y,
                req.poses[x].orientation.z, req.poses[x].orientation.w
            ])

            ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

            # Calculate Wrest Center
            WC = EE - DH[d7] * ROT_EE[:, 2]

            theta1, theta2, theta3 = Calculate_theta_1_2_3(WC)
            theta4, theta5, theta6 = Calculate_theta_4_5_6(
                T0_1, T1_2, T2_3, ROT_EE, theta1, theta2, theta3, q1, q2, q3)
            # Populate response for the IK request
            # In the next line replace theta1,theta2...,theta6 by your joint angle variables
            joint_trajectory_point.positions = [
                theta1, theta2, theta3, theta4, theta5, theta6
            ]
            joint_trajectory_list.append(joint_trajectory_point)

        rospy.loginfo("length of Joint Trajectory List: %s" %
                      len(joint_trajectory_list))
        return CalculateIKResponse(joint_trajectory_list)
示例#31
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0
    class Position:
        def __init__(self,EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]
    class Orientation:
        def __init__(self,EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self,position,orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position,orientation)

    class Pose:
        def __init__(self,comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()
    
    ########################################################################################
    ## 

    ## Insert IK code here!

    q1,q2,q3,q4,q5,q6,q7 = symbols('q1:8')
    d1,d2,d3,d4,d5,d6,d7 = symbols('d1:8')
    a0,a1,a2,a3,a4,a5,a6 = symbols('a0:7')
    alpha0,alpha1,alpha2,alpha3,alpha4,alpha5,alpha6 = symbols('alpha0:7')

    s = {alpha0:     0, a0:      0, d1:  0.75, q1:      q1,
         alpha1: -pi/2, a1:   0.35, d2:     0, q2: q2-pi/2,
         alpha2:     0, a2:   1.25, d3:     0, q3:      q3,
         alpha3: -pi/2, a3: -0.054, d4:   1.5, q4:      q4,
         alpha4:  pi/2, a4:      0, d5:     0, q5:      q5,
         alpha5: -pi/2, a5:      0, d6:     0, q6:      q6,
         alpha6:     0, a6:      0, d7: 0.303, q7:       0}

    def TF_Matrix(alpha, a, d, q):
        TF = Matrix([[           cos(q),           -sin(q),           0,             a],
                       [sin(q)*cos(alpha), cos(q)*cos(alpha), -sin(alpha), -sin(alpha)*d],
                       [sin(q)*sin(alpha), cos(q)*sin(alpha),  cos(alpha),  cos(alpha)*d],
                       [                0,                 0,           0,             1]])
        return TF
    
    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(s)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(s)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(s)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(s)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(s)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(s)
    T6_G = TF_Matrix(alpha6, a6, d7, q7).subs(s)

    R_z = Matrix([[    cos(np.pi), -sin(np.pi),             0, 0],
                  [    sin(np.pi),  cos(np.pi),             0, 0],
                  [             0,           0,             1, 0],
                  [             0,           0,             0, 1]])
    R_y = Matrix([[ cos(-np.pi/2),           0, sin(-np.pi/2), 0],
                  [             0,           1,             0, 0],
                  [-sin(-np.pi/2),           0, cos(-np.pi/2), 0],
                  [             0,           0,             0, 1]])

    T0_G = simplify(T0_1*T1_2*T2_3*T3_4*T4_5*T5_6*T6_G*R_z*R_y)

    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion(
            [req.poses[x].orientation.x, req.poses[x].orientation.y,
                req.poses[x].orientation.z, req.poses[x].orientation.w])

    r, p, y = symbols('r p y')

    ROT_x = Matrix([[     1,       0,      0],
                    [      0, cos(r),-sin(r)],
                    [      0, sin(r), cos(r)]])
    ROT_y = Matrix([[ cos(p),      0, sin(p)],
                    [      0,      1,      0],
                    [-sin(p),      0, cos(p)]])
    ROT_z = Matrix([[ cos(y),-sin(y),      0],
                    [ sin(y), cos(y),      0],
                    [      0,      0,      1]])

    ROT_EE = ROT_z*ROT_y*ROT_x
    ROT_Error = ROT_z.subs(y, radians(180)) * ROT_y.subs(p, radians(-90))

    ROT_EE = ROT_EE * ROT_Error
    ROT_EE = ROT_EE.subs({'r':roll, 'p':pitch, 'y':yaw})

    EE = Matrix([[px],
                 [py],
                 [pz]])

    WC = EE - (0.303) * ROT_EE[:,2]

    theta1 = atan2(WC[1],WC[0])
    side_a = 1.501
    side_b = sqrt(pow((sqrt(WC[0]*WC[0]+WC[1]*WC[1])-0.35),2) + pow((WC[2] - 0.75), 2))
    side_c = 1.25

    angle_a = acos((side_b*side_b + side_c*side_c - side_a*side_a)/(2*side_b*side_c))
    angle_b = acos((side_a*side_a + side_c*side_c - side_b*side_b)/(2*side_a*side_c))
    angle_c = acos((side_a*side_a + side_b*side_b - side_c*side_c)/(2*side_a*side_b))

    theta2 = pi/2 - angle_a - atan2(WC[2] - 0.75, sqrt(WC[0]*WC[0] + WC[1]*WC[1]) -0.35)
    theta3 = pi/2 -(angle_b + 0.036)

    R0_3 = T0_1[0:3,0:3] * T1_2[0:3,0:3] * T2_3[0:3,0:3]
    R0_3 = R0_3.evalf(subs={q1:theta1, q2:theta2, q3:theta3})
    R3_6 = R0_3.inv(method="LU") * ROT_EE

    theta4 = atan2(R3_6[2,2], -R3_6[0,2])
    theta5 = atan2(sqrt(R3_6[0,2]*R3_6[0,2] + R3_6[2,2]*R3_6[2,2]),R3_6[1,2])
    theta6 = atan2(-R3_6[1,1], R3_6[1,0])
    ## 
    ########################################################################################
    
    ########################################################################################
    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    ## (OPTIONAL) YOUR CODE HERE!

    FK = T0_G.evalf(subs={q1:theta1,q2:theta2,q3:theta3,q4:theta4,q5:theta5,q6:theta6})

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0],WC[1],WC[2]] # <--- Load your calculated WC values in this array
    your_ee = [FK[0,3],FK[1,3],FK[2,3]] # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print ("\nTotal run time to calculate joint angles from pose is %04.4f seconds" % (time()-start_time))

    # Find WC error
    if not(sum(your_wc)==3):
        wc_x_e = abs(your_wc[0]-test_case[1][0])
        wc_y_e = abs(your_wc[1]-test_case[1][1])
        wc_z_e = abs(your_wc[2]-test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print ("\nWrist error for x position is: %04.8f" % wc_x_e)
        print ("Wrist error for y position is: %04.8f" % wc_y_e)
        print ("Wrist error for z position is: %04.8f" % wc_z_e)
        print ("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1-test_case[2][0])
    t_2_e = abs(theta2-test_case[2][1])
    t_3_e = abs(theta3-test_case[2][2])
    t_4_e = abs(theta4-test_case[2][3])
    t_5_e = abs(theta5-test_case[2][4])
    t_6_e = abs(theta6-test_case[2][5])
    print ("\nTheta 1 error is: %04.8f" % t_1_e)
    print ("Theta 2 error is: %04.8f" % t_2_e)
    print ("Theta 3 error is: %04.8f" % t_3_e)
    print ("Theta 4 error is: %04.8f" % t_4_e)
    print ("Theta 5 error is: %04.8f" % t_5_e)
    print ("Theta 6 error is: %04.8f" % t_6_e)
    print ("\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print (" ")

    # Find FK EE error
    if not(sum(your_ee)==3):
        ee_x_e = abs(your_ee[0]-test_case[0][0][0])
        ee_y_e = abs(your_ee[1]-test_case[0][0][1])
        ee_z_e = abs(your_ee[2]-test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print ("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print ("End effector error for y position is: %04.8f" % ee_y_e)
        print ("End effector error for z position is: %04.8f" % ee_z_e)
        print ("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#32
0
def test_code(test_case):
    ## Set up code
    ## Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    req = Pose(comb)
    start_time = time()

    ########################################################################################
    #### Insert IK code here! starting at: Define DH parameter symbols

    #if not os.path.exists("T0_EE.p"):
    # Define DH param symbols

    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')  # link offset
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')  # link length
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')  # twist angle
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')  # joint angle symbols
    r, p, y = symbols('r p y')

    # Modified DH params

    DH_Table = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        q1: q1,
        alpha1: -pi / 2.,
        a1: 0.35,
        d2: 0,
        q2: -pi / 2. + q2,
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alpha3: -pi / 2.,
        a3: -0.054,
        d4: 1.5,
        q4: q4,
        alpha4: pi / 2,
        a4: 0,
        d5: 0,
        q5: q5,
        alpha5: -pi / 2.,
        a5: 0,
        d6: 0,
        q6: q6,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    # define modified DH transformation matrix

    def TF_Matrix(alpha, a, d, q):
        TF = Matrix([[cos(q), -sin(q), 0, a],
                     [
                         sin(q) * cos(alpha),
                         cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d
                     ],
                     [
                         sin(q) * sin(alpha),
                         cos(q) * sin(alpha),
                         cos(alpha),
                         cos(alpha) * d
                     ], [0, 0, 0, 1]])
        return TF

    T0_1 = TF_Matrix(alpha0, a0, d1, q1).subs(DH_Table)
    T1_2 = TF_Matrix(alpha1, a1, d2, q2).subs(DH_Table)
    T2_3 = TF_Matrix(alpha2, a2, d3, q3).subs(DH_Table)
    T3_4 = TF_Matrix(alpha3, a3, d4, q4).subs(DH_Table)
    T4_5 = TF_Matrix(alpha4, a4, d5, q5).subs(DH_Table)
    T5_6 = TF_Matrix(alpha5, a5, d6, q6).subs(DH_Table)
    T6_EE = TF_Matrix(alpha6, a6, d7, q7).subs(DH_Table)

    if not os.path.exists("T0_EE.p"):

        T0_EE = simplify(T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_EE)

        pickle.dump(T0_EE, open("T0_EE.p", "wb"))

        R0_3 = simplify(T0_1[0:3, 0:3] * T1_2[0:3, 0:3] * T2_3[0:3, 0:3])

        pickle.dump(R0_3, open("R0_3.p", "wb"))
        # Find EE rotation matrix
        # Define RPY roation matrices

        R_x = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r),
                                                        cos(r)]])  # roll

        R_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0,
                                                       cos(p)]])  # pitch

        R_z = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0,
                                                                  1]])  # yaw

        R_EE = simplify(R_z * R_y * R_x)

        # Error Correction Matrix for DH and URDF difference

        R_Error = R_z.subs(y, radians(180)) * R_y.subs(p, radians(-90))
        R_EE = simplify(R_EE * R_Error)

        pickle.dump(R_EE, open("R_EE.p", "wb"))

    else:
        T0_EE = pickle.load(open("T0_EE.p", "rb"))
        R0_3 = pickle.load(open("R0_3.p", "rb"))
        R_EE = pickle.load(open("R_EE.p", "rb"))

# Extract end-effector position and orientation from request
# px, py, pz = end-effector position
# roll, pitch, yaw = end-effector orientation

    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    R_EE = R_EE.subs({'r': roll, 'p': pitch, 'y': yaw})

    EE = Matrix([[px], [py], [pz]])

    WC = EE - (0.303) * R_EE[:, 2]

    theta1 = atan2(WC[1], WC[0]).evalf()

    # SSS triangle for theta2 and theta3

    A = 1.501

    Perp = WC[2] - 0.75

    Base = sqrt(WC[0] * WC[0] + WC[1] * WC[1]) - 0.35

    B = sqrt(Perp * Perp + Base * Base)

    phi = atan2(Perp, Base)

    C = 1.25

    a = acos((B * B + C * C - A * A) / (2 * B * C))
    b = acos((A * A + C * C - B * B) / (2 * A * C))
    c = acos((A * A + B * B - C * C) / (2 * A * A))

    theta2 = (pi / 2. - a - phi).evalf()

    gamma = atan2(0.054, 1.5)  # Tilt angle from joint3 to joint5

    theta3 = (
        pi / 2. -
        (b + gamma)).evalf()  # 0.036 accounts for sag in link4 of -0.054m

    R0_3 = R0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    R3_6 = R0_3.transpose() * R_EE

    # Euler angles from rotation matrix

    theta5 = atan2(sqrt(R3_6[0, 2] * R3_6[0, 2] + R3_6[2, 2] * R3_6[2, 2]),
                   R3_6[1, 2]).evalf()

    if (sin(theta5) > 0):
        theta4 = atan2(R3_6[2, 2], -R3_6[0, 2]).evalf()
        theta6 = atan2(-R3_6[1, 1], R3_6[1, 0]).evalf()
    elif (theta5 == 0):
        theta4 = 0
        theta6 = atan2(-R3_6[0, 1], -R3_6[2, 1]).evalf()
    else:
        theta4 = atan2(-R3_6[2, 2], R3_6[0, 2]).evalf()
        theta6 = atan2(R3_6[1, 1], -R3_6[1, 0]).evalf()

    while (theta4 > pi):
        theta4 = theta4 - 2 * pi
    while (theta4 < -pi):
        theta4 = theta4 + 2 * pi

    while (theta5 > pi):
        theta5 = theta5 - 2 * pi
    while (theta5 < -pi):
        theta5 = theta5 + 2 * pi

    while (theta6 > pi):
        theta6 = theta6 - 2 * pi
    while (theta6 < -pi):
        theta6 = theta6 + 2 * pi

    ########################################################################################
    ########################################################################################

    ## For additional debugging add your forward kinematics here. Use your previously calculated thetas
    ## as the input and output the position of your end effector as your_ee = [x,y,z]

    FK = T0_EE.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    ## End your code input for forward kinematics here!
    ########################################################################################

    ## For error analysis please set the following variables of your WC location and EE location in the format of [x,y,z]
    your_wc = [WC[0], WC[1],
               WC[2]]  # <--- Load your calculated WC values in this array
    your_ee = [
        FK[0, 3], FK[1, 3], FK[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics
    ########################################################################################

    ## Error analysis
    print(
        "Total run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    '''
    print ("\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have muliple positions. It is best to add your forward kinmeatics to \
           \nconfirm whether your code is working or not**")
    print (" ")
    '''
    # FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)
示例#33
0
def test_code(test_case):
    # Set up code
    # Do not modify!
    x = 0

    class Position:
        def __init__(self, EE_pos):
            self.x = EE_pos[0]
            self.y = EE_pos[1]
            self.z = EE_pos[2]

    class Orientation:
        def __init__(self, EE_ori):
            self.x = EE_ori[0]
            self.y = EE_ori[1]
            self.z = EE_ori[2]
            self.w = EE_ori[3]

    position = Position(test_case[0][0])
    orientation = Orientation(test_case[0][1])

    class Combine:
        def __init__(self, position, orientation):
            self.position = position
            self.orientation = orientation

    comb = Combine(position, orientation)

    class Pose:
        def __init__(self, comb):
            self.poses = [comb]

    def build_transform(a, d, q, alpha):
        return Matrix([[cos(q), -sin(q), 0, a],
                       [
                           sin(q) * cos(alpha),
                           cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d
                       ],
                       [
                           sin(q) * sin(alpha),
                           cos(q) * sin(alpha),
                           cos(alpha),
                           cos(alpha * d)
                       ], [0, 0, 0, 1]])

    # link lengths
    a0, a1, a2, a3, a4, a5, a6 = symbols('a0:7')

    # link offsets
    d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8')

    # joint angles
    q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8')

    # twist angles
    alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols(
        'alpha0:7')

    # DH parameter table
    dh_table = {
        alpha0: 0,
        a0: 0,
        d1: 0.75,
        q1: q1,
        alpha1: -pi / 2,
        a1: 0.35,
        d2: 0,
        q2: -pi / 2 + q2,
        alpha2: 0,
        a2: 1.25,
        d3: 0,
        q3: q3,
        alpha3: -pi / 2,
        a3: -0.054,
        d4: 1.50,
        q4: q4,
        alpha4: pi / 2,
        a4: 0,
        d5: 0,
        q5: q5,
        alpha5: -pi / 2,
        a5: 0,
        d6: 0,
        q6: q6,
        alpha6: 0,
        a6: 0,
        d7: 0.303,
        q7: 0
    }

    # transformation matrices between frames
    t0_1 = build_transform(a0, d1, q1, alpha0).subs(dh_table)
    t1_2 = build_transform(a1, d2, q2, alpha1).subs(dh_table)
    t2_3 = build_transform(a2, d3, q3, alpha2).subs(dh_table)
    t3_4 = build_transform(a3, d4, q4, alpha3).subs(dh_table)
    t4_5 = build_transform(a4, d5, q5, alpha4).subs(dh_table)
    t5_6 = build_transform(a5, d6, q6, alpha5).subs(dh_table)
    t6_7 = build_transform(a6, d7, q7, alpha6).subs(dh_table)

    # Base to end-effector transform
    t0_7 = t0_1 * t1_2 * t2_3 * t3_4 * t4_5 * t5_6 * t6_7

    # roll, pitch, yaw respectively
    r, p, y = symbols('r p y')

    # build out the rotation matrices for x, y, and z respectively
    rot_x = Matrix([[1, 0, 0], [0, cos(r), -sin(r)], [0, sin(r), cos(r)]])

    rot_y = Matrix([[cos(p), 0, sin(p)], [0, 1, 0], [-sin(p), 0, cos(p)]])

    rot_z = Matrix([[cos(y), -sin(y), 0], [sin(y), cos(y), 0], [0, 0, 1]])

    # multiply them together to yield the cumulative rotation matrix
    rot_7 = rot_z * rot_y * rot_x

    # apply the correction to the rotation matrix. this adjusts the values into our coordinate space
    rot_correction = rot_z.subs(y, radians(180)) * rot_y.subs(p, radians(-90))
    rot_7 = rot_7 * rot_correction

    req = Pose(comb)
    start_time = time()

    # read in the positions
    px = req.poses[x].position.x
    py = req.poses[x].position.y
    pz = req.poses[x].position.z

    # read in the roll, pitch, yaw as euler angles from the received quaternion
    (roll, pitch, yaw) = tf.transformations.euler_from_quaternion([
        req.poses[x].orientation.x, req.poses[x].orientation.y,
        req.poses[x].orientation.z, req.poses[x].orientation.w
    ])

    rot_ee = rot_7.subs({'r': roll, 'p': pitch, 'y': yaw})

    end_effector = Matrix([[px], [py], [pz]])
    wrist_center = end_effector - (0.303) * rot_ee[:, 2]

    theta1 = atan2(wrist_center[1], wrist_center[0])

    # SSS triangles for thetas 2 and 3
    side_a = 1.50
    side_b = sqrt(
        pow((sqrt(wrist_center[0] * wrist_center[0] +
                  wrist_center[1] * wrist_center[1]) - 0.35), 2) +
        pow((wrist_center[2] - 0.75), 2))
    side_c = 1.25

    # solve the angles in the triangle
    A = acos((side_b * side_b + side_c * side_c - side_a * side_a) /
             (2 * side_b * side_c))
    B = acos((side_a * side_a + side_c * side_c - side_b * side_b) /
             (2 * side_a * side_c))
    D = atan2(
        wrist_center[2] - 0.75,
        sqrt(wrist_center[0] * wrist_center[0] +
             wrist_center[1] * wrist_center[1]) - 0.35)

    # we know the angles above plus our angles less any offsets should add to 90 degrees
    theta2 = pi / 2 - (A + D)
    theta3 = pi / 2 - (B + 0.036)  # due to the 0.054 sag in link 4

    # build the rotation matrix from 0 to 3 and sub in our thetas for the first 3 joints
    rot0_3 = t0_1[0:3, 0:3] * t1_2[0:3, 0:3] * t2_3[0:3, 0:3]
    rot0_3 = rot0_3.evalf(subs={q1: theta1, q2: theta2, q3: theta3})

    # because the matrix is orthonormal we can use transpose instead of inv for the rotation matrix from 3 to 6
    rot3_6 = rot0_3.transpose() * rot_ee

    # solving the euler angles for the rotation matrix from 3 to 6
    theta4 = atan2(rot3_6[2, 2], -rot3_6[0, 2])
    theta5 = atan2(
        sqrt(rot3_6[0, 2] * rot3_6[0, 2] + rot3_6[2, 2] * rot3_6[2, 2]),
        rot3_6[1, 2])
    theta6 = atan2(-rot3_6[1, 1], rot3_6[1, 0])

    fk = t0_7.evalf(subs={
        q1: theta1,
        q2: theta2,
        q3: theta3,
        q4: theta4,
        q5: theta5,
        q6: theta6
    })

    your_wc = [wrist_center[0], wrist_center[1], wrist_center[2]
               ]  # <--- Load your calculated WC values in this array
    your_ee = [
        fk[0, 3], fk[1, 3], fk[2, 3]
    ]  # <--- Load your calculated end effector value from your forward kinematics

    # Error analysis
    print(
        "\nTotal run time to calculate joint angles from pose is %04.4f seconds"
        % (time() - start_time))

    # Find WC error
    if not (sum(your_wc) == 3):
        wc_x_e = abs(your_wc[0] - test_case[1][0])
        wc_y_e = abs(your_wc[1] - test_case[1][1])
        wc_z_e = abs(your_wc[2] - test_case[1][2])
        wc_offset = sqrt(wc_x_e**2 + wc_y_e**2 + wc_z_e**2)
        print("\nWrist error for x position is: %04.8f" % wc_x_e)
        print("Wrist error for y position is: %04.8f" % wc_y_e)
        print("Wrist error for z position is: %04.8f" % wc_z_e)
        print("Overall wrist offset is: %04.8f units" % wc_offset)

    # Find theta errors
    t_1_e = abs(theta1 - test_case[2][0])
    t_2_e = abs(theta2 - test_case[2][1])
    t_3_e = abs(theta3 - test_case[2][2])
    t_4_e = abs(theta4 - test_case[2][3])
    t_5_e = abs(theta5 - test_case[2][4])
    t_6_e = abs(theta6 - test_case[2][5])
    print("\nTheta 1 error is: %04.8f" % t_1_e)
    print("Theta 2 error is: %04.8f" % t_2_e)
    print("Theta 3 error is: %04.8f" % t_3_e)
    print("Theta 4 error is: %04.8f" % t_4_e)
    print("Theta 5 error is: %04.8f" % t_5_e)
    print("Theta 6 error is: %04.8f" % t_6_e)
    print(
        "\n**These theta errors may not be a correct representation of your code, due to the fact \
           \nthat the arm can have multiple positions. It is best to add your forward kinematics to \
           \nconfirm whether your code is working or not**")
    print(" ")

    # Find FK EE error
    if not (sum(your_ee) == 3):
        ee_x_e = abs(your_ee[0] - test_case[0][0][0])
        ee_y_e = abs(your_ee[1] - test_case[0][0][1])
        ee_z_e = abs(your_ee[2] - test_case[0][0][2])
        ee_offset = sqrt(ee_x_e**2 + ee_y_e**2 + ee_z_e**2)
        print("\nEnd effector error for x position is: %04.8f" % ee_x_e)
        print("End effector error for y position is: %04.8f" % ee_y_e)
        print("End effector error for z position is: %04.8f" % ee_z_e)
        print("Overall end effector offset is: %04.8f units \n" % ee_offset)