示例#1
0
def test_msvd():
    output("""\
    msvd_:{[b;x]
        $[3<>count usv:.qml.msvd x;::;
          not (.qml.mdim[u:usv 0]~2#d 0) and (.qml.mdim[v:usv 2]~2#d 1) and
            .qml.mdim[s:usv 1]~d:.qml.mdim x;::;
          not mortho[u] and mortho[v] and
            all[0<=f:.qml.mdiag s] and mzero s _'til d 0;::;
          not mzero x-.qml.mm[u] .qml.mm[s] flip v;::;
          b;1b;(p*/:m#/:u;m#m#/:s;
              (p:(f>.qml.eps*f[0]*max d)*1-2*0>m#u 0)*/:(m:min d)#/:v)]};""")

    for A in subjects:
        U, S, V = map(mp.matrix, mp.svd(mp.matrix(A)))
        m = min(A.rows, A.cols)
        p = mp.diag([mp.sign(s * u) for s, u in zip(mp.chop(S), U[0, :])])
        U *= p
        S = mp.diag(S)
        V = V.T * p
        test("msvd_[0b", A, (U, S, V))

    reps(250)
    for Aq in large_subjects:
        test("msvd_[1b", qstr(Aq), qstr("1b"))
    reps(10000)
示例#2
0
文件: mpmat.py 项目: zholos/qml
def test_msvd():
    output("""\
    msvd_:{[b;x]
        $[3<>count usv:.qml.msvd x;::;
          not (.qml.mdim[u:usv 0]~2#d 0) and (.qml.mdim[v:usv 2]~2#d 1) and
            .qml.mdim[s:usv 1]~d:.qml.mdim x;::;
          not mortho[u] and mortho[v] and
            all[0<=f:.qml.mdiag s] and mzero s _'til d 0;::;
          not mzero x-.qml.mm[u] .qml.mm[s] flip v;::;
          b;1b;(p*/:m#/:u;m#m#/:s;
              (p:(f>.qml.eps*f[0]*max d)*1-2*0>m#u 0)*/:(m:min d)#/:v)]};""")

    for A in subjects:
        U, S, V = map(mp.matrix, mp.svd(mp.matrix(A)))
        m = min(A.rows, A.cols)
        p = mp.diag([mp.sign(s * u) for s, u in zip(mp.chop(S), U[0, :])])
        U *= p
        S = mp.diag(S)
        V = V.T * p
        test("msvd_[0b", A, (U, S, V))

    reps(250)
    for Aq in large_subjects:
        test("msvd_[1b", qstr(Aq), qstr("1b"))
    reps(10000)
示例#3
0
			def psolve(M, b):
				U, S, V = mp.svd(M)

				if False:
					print("V")
					testHermitian(V)
					print("U")
					testHermitian(U)
					sys.exit(1)

				Mpinv = V.transpose_conj() * (mp.diag(S)**(-1)) * U.transpose_conj()
				ws = Mpinv*mp.matrix(b)
				return [ws[i] for i in range(len(ws))]
示例#4
0
def test_mev():
    output("""\
    reim:{$[0>type x;1 0*x;2=count x;x;'`]};
    mc:{((x[0]*y 0)-x[1]*y 1;(x[0]*y 1)+x[1]*y 0)};
    mmc:{((.qml.mm[x 0]y 0)-.qml.mm[x 1]y 1;(.qml.mm[x 0]y 1)+.qml.mm[x 1]y 0)};
    mev_:{[b;x]
        if[2<>count wv:.qml.mev x;'`length];
        if[not all over prec>=abs
            mmc[flip vc;flip(flip')(reim'')flip x]-
            flip(w:reim'[wv 0])mc'vc:(flip')(reim'')(v:wv 1);'`check];
        / Normalize sign; LAPACK already normalized to real
        v*:1-2*0>{x a?max a:abs x}each vc[;0];
        (?'[prec>=abs w[;1];w[;0];w];?'[b;v;0n])};""")

    for A in eigenvalue_subjects:
        if A.rows <= 3:
            V = []
            for w, n, r in A.eigenvects():
                w = sp.simplify(sp.expand_complex(w))
                if len(r) == 1:
                    r = r[0]
                    r = sp.simplify(sp.expand_complex(r))
                    r = r.normalized() / sp.sign(max(r, key=abs))
                    r = sp.simplify(sp.expand_complex(r))
                else:
                    r = None
                V.extend([(w, r)] * n)
            V.sort(key=lambda (x, _): (-abs(x), -sp.im(x)))
        else:
            Am = mp.matrix(A)
            # extra precision for complex pairs to be equal in sort
            with mp.extradps(mp.mp.dps):
                W, R = mp.eig(Am)
            V = []
            for w, r in zip(W, (R.column(i) for i in range(R.cols))):
                w = mp.chop(w)
                with mp.extradps(mp.mp.dps):
                    _, S, _ = mp.svd(Am - w * mp.eye(A.rows))
                if sum(x == 0 for x in mp.chop(S)) == 1:
                    # nullity 1, so normalized eigenvector is unique
                    r /= mp.norm(r) * mp.sign(max(r, key=abs))
                    r = mp.chop(r)
                else:
                    r = None
                V.append((w, r))
            V.sort(key=lambda (x, _): (-abs(x), -x.imag))
        W, R = zip(*V)
        test("mev_[%sb" % "".join("0" if r is None else "1" for r in R),
             A, (W, [r if r is None else list(r) for r in R]),
             complex_pair=True)
示例#5
0
文件: mpmat.py 项目: zholos/qml
def test_mev():
    output("""\
    reim:{$[0>type x;1 0*x;2=count x;x;'`]};
    mc:{((x[0]*y 0)-x[1]*y 1;(x[0]*y 1)+x[1]*y 0)};
    mmc:{((.qml.mm[x 0]y 0)-.qml.mm[x 1]y 1;(.qml.mm[x 0]y 1)+.qml.mm[x 1]y 0)};
    mev_:{[b;x]
        if[2<>count wv:.qml.mev x;'`length];
        if[not all over prec>=abs
            mmc[flip vc;flip(flip')(reim'')flip x]-
            flip(w:reim'[wv 0])mc'vc:(flip')(reim'')(v:wv 1);'`check];
        / Normalize sign; LAPACK already normalized to real
        v*:1-2*0>{x a?max a:abs x}each vc[;0];
        (?'[prec>=abs w[;1];w[;0];w];?'[b;v;0n])};""")

    for A in eigenvalue_subjects:
        if A.rows <= 3:
            V = []
            for w, n, r in A.eigenvects():
                w = sp.simplify(sp.expand_complex(w))
                if len(r) == 1:
                    r = r[0]
                    r = sp.simplify(sp.expand_complex(r))
                    r = r.normalized() / sp.sign(max(r, key=abs))
                    r = sp.simplify(sp.expand_complex(r))
                else:
                    r = None
                V.extend([(w, r)]*n)
            V.sort(key=lambda (x, _): (-abs(x), -sp.im(x)))
        else:
            Am = mp.matrix(A)
            # extra precision for complex pairs to be equal in sort
            with mp.extradps(mp.mp.dps):
                W, R = mp.eig(Am)
            V = []
            for w, r in zip(W, (R.column(i) for i in range(R.cols))):
                w = mp.chop(w)
                with mp.extradps(mp.mp.dps):
                    _, S, _ = mp.svd(Am - w*mp.eye(A.rows))
                if sum(x == 0 for x in mp.chop(S)) == 1:
                    # nullity 1, so normalized eigenvector is unique
                    r /= mp.norm(r) * mp.sign(max(r, key=abs))
                    r = mp.chop(r)
                else:
                    r = None
                V.append((w, r))
            V.sort(key=lambda (x, _): (-abs(x), -x.imag))
        W, R = zip(*V)
        test("mev_[%sb" % "".join("0" if r is None else "1" for r in R), A,
             (W, [r if r is None else list(r) for r in R]), complex_pair=True)
示例#6
0
def subspace_angle_V_M_mp(mu, lam, dps=100):
    r"""Multiprecision implementation computing the subspace angle between V(mu) and M(lam) 
	"""
    n = len(mu)
    lam = np.atleast_1d(lam)
    m = len(lam)

    with mp.workdps(dps):
        mu = mp.matrix(mu)
        lam = mp.matrix(lam)

        # Construct the Cauchy mass matrix
        #M = mp.zeros(n,n)
        #for i,j in 	product(range(n), range(n)):
        #	M[i,j] = (mu[i] + mu[j].conjugate())**(-1)
        #ewL, QL = mp.eighe(M)
        ewL, QL = cauchy_eigen(mu, dps)

        # Construct the right hand side Mhat matrix
        Mhat = mp.zeros(2 * m, 2 * m)
        for i, j in product(range(m), range(m)):
            Mhat[i, j] = (-lam[i] - lam[j].conjugate())**(-1)
            Mhat[i, m + j] = (-lam[i] - lam[j].conjugate())**(-2)
            Mhat[m + i, j] = (-lam[i] - lam[j].conjugate())**(-2).conjugate()
            Mhat[m + i, m + j] = 2 * (-lam[i] - lam[j].conjugate())**(-3)

        # Construct the interior matrix
        A = mp.zeros(n, 2 * m)
        for i, j in product(range(n), range(m)):
            A[i, j] = (mu[i] - lam[j])**(-1)
            A[i, m + j] = (mu[i] - lam[j])**(-2)

        ewR, QR = mp.eighe(Mhat)

        AA = mp.diag([1 / mp.sqrt(ewL[i])
                      for i in range(n)]) * (QL.H * A * QR) * mp.diag(
                          [1 / mp.sqrt(ewR[i]) for i in range(2 * m)])
        U, s, VH = mp.svd(AA)
        phi = np.array([float(mp.acos(si)) for si in s])
        return phi
示例#7
0
文件: mpseudo.py 项目: scidam/mpseudo
 def ff(x, y): return np.float128(mp.svd(mp.matrix((x+(1j) * y) * np.eye(args[0][-2], args[0][-1]) - args[0][2]), compute_uv=False).tolist()[-1][0])
 result = (args[0][0],
    def FindRelativeMotionMultiPoints_mpmath(self, base_frame_ind,
                                             targ_frame_ind, pnt_ids,
                                             pnt_depthes):
        eltype = self.elem_type
        points_num = len(pnt_ids)
        assert points_num == len(pnt_depthes)

        # estimage camera position [R,T] given distances to all 3D points pj in frame1
        x_img_skew = mpmath.matrix(3, 3)
        A = mpmath.matrix(3 * points_num, 12)
        for i, pnt_id in enumerate(pnt_ids):
            pnt_ind = pnt_id
            pnt_life = self.points_life[pnt_ind]
            x1 = pnt_life.points_list_meter[base_frame_ind]

            x_img = pnt_life.points_list_meter[targ_frame_ind]
            skewSymmeticMatWithAdapter(x_img, lambda x: mpmath.mpf(str(x)),
                                       x_img_skew)

            A[3 * i:3 * (i + 1), 0:3] = x_img_skew * mpmath.mpf(str(x1[0]))
            A[3 * i:3 * (i + 1), 3:6] = x_img_skew * mpmath.mpf(str(x1[1]))
            A[3 * i:3 * (i + 1), 6:9] = x_img_skew * mpmath.mpf(str(x1[2]))

            depth = mpmath.mpf(str(pnt_depthes[i]))
            alph = 1 / depth
            A[3 * i:3 * (i + 1), 9:12] = x_img_skew * alph

        #
        u1, dVec1, vt1 = mpmath.svd_r(A)

        # take the last column of V
        cam_R_noisy = mpmath.matrix(3, 3)
        for col in range(0, 3):
            for row in range(0, 3):
                cam_R_noisy[row, col] = vt1[11, col * 3 + row]
        cam_Tvec_noisy = mpmath.matrix(3, 1)
        for row in range(0, 3):
            cam_Tvec_noisy[row, 0] = vt1[11, 9 + row]

        # project noisy [R,T] onto SO(3) (see MASKS, formula 8.41 and 8.42)
        u2, dVec2, vt2 = mpmath.svd(cam_R_noisy)

        no_guts = u2 * vt2
        no_guts_det = mpmath.det(no_guts)
        sign1 = mpmath.sign(no_guts_det)
        frame_R = no_guts * sign1

        det_den = dVec2[0] * dVec2[1] * dVec2[2]
        if math.isclose(0, det_den):
            return False, None

        t_factor = sign1 / rootCube(det_den)
        cam_Tvec = cam_Tvec_noisy * t_factor

        if sum(1 for a in cam_Tvec if not math.isfinite(a)) > 0:
            print("error: nan")
            return False, None

        # convert results into default precision type
        rel_R = np.zeros((3, 3), dtype=eltype)
        rel_T = np.zeros(3, dtype=eltype)
        for row in range(0, 3):
            for col in range(0, 3):
                rel_R[row, col] = float(frame_R[row, col])
            rel_T[row] = cam_Tvec[row, 0]

        p_err = [""]
        assert IsSpecialOrthogonal(rel_R, p_err), p_err[0]

        return True, (rel_R, rel_T)