def getCoordinates(coords, box, image):
    """
    This function gets the latitude and longitude coordinates for an image list.
    
    Parameters
    ----------
    coords : coordinate list used to make the box
    box : box returne from checkSize.
    image : the image received from getSatelliteImage

    Returns
    -------
    List containing the coordinates for each pixel.

    """

    #get the lower left and upper right coordinates of the box
    ll = box.lower_left
    ur = box.upper_right
    #figure out the length of all sides of the box in km
    left_side_distance = mpu.haversine_distance([coords[1], coords[0]],
                                                [ll[1], ll[0]])
    right_side_distance = mpu.haversine_distance([coords[3], coords[2]],
                                                 [ur[1], ur[0]])
    top_distance = mpu.haversine_distance([coords[1], coords[0]],
                                          [ur[1], ur[0]])
    bottom_distance = mpu.haversine_distance([coords[3], coords[2]],
                                             [ll[1], ll[0]])
    #so the sides are the same distance, but the top and bottom are not, due to the curvature of the earth.
    #this means that each pixel will have the same height, but will have different widths, depending on how close to the bottom
    #of the image they are.
    pixel_height = left_side_distance / len(image[0])
    pixel_top_width = top_distance / len(image[0][0])
    pixel_bottom_width = bottom_distance / len(image[0][0])
    #next, I need to find how much the width needs to change per pixel as we go from top to bottom
    width_increment = (pixel_bottom_width - pixel_top_width) / len(image[0])
    #now to get the coordinates for each pixel
    coordinates = []
    start = [coords[1], coords[0]]
    #loop through each level of height first, get a whole down and then increment the width
    for i in range(len(image[0])):
        if i % 100 == 0:
            print(str(i) + " of " + str(len(image[0])))
        width = pixel_top_width + i * width_increment
        #now to loop through each pixel on x-axis
        row = []
        for j in range(len(image[0][0])):
            coor = geopy.distance.geodesic(kilometers=pixel_height *
                                           (i + .5)).destination(point=start,
                                                                 bearing=180)
            coor = geopy.distance.geodesic(kilometers=width *
                                           (j + 0.5)).destination(point=coor,
                                                                  bearing=90)
            row.append(coor)
        coordinates.append(row)

    return coordinates
示例#2
0
def convert_locations_to_filenames():
    allFiles = glob.glob("*.csv")
    frame = pd.DataFrame()
    list_ = []
    for file_ in allFiles:
        df = pd.read_csv(file_, index_col=None, header=0, parse_dates=['time'])
        list_.append(df)
    frame = pd.concat(list_)
    df['seconds'] = [
        datetime.datetime.utcfromtimestamp(
            (long)(time.mktime(t.timetuple()))) - datetime.timedelta(hours=4)
        for t in df.time
    ]
    df['dup_seconds'] = [t for t in df.seconds]

    base_lat = df['lat'].iloc[0]
    base_lon = df['lon'].iloc[0]
    print(base_lat, base_lon)
    df['distance'] = [
        mpu.haversine_distance(
            (base_lat, base_lon),
            (df['lat'].iloc[rowNum], df['lon'].iloc[rowNum]))
        for rowNum in range(len(df))
    ]
    return df
示例#3
0
def get_order():
    OrdersItems = db.session.query(OrdersMaintenance).join(OrderStatus).filter(
        OrdersMaintenance.IdService == current_user.IdService
        and OrderStatus.OrderStatus != 'pending').all()
    try:
        dist = mpu.haversine_distance(
            (float(current_user.lat), float(current_user.lon)),
            (float(OrdersItems[0].latit), float(OrdersItems[0].lon)))
        if dist <= 10.0:
            OrdersItemsGeo = db.session.query(OrdersMaintenance).join(
                OrderStatus).filter(
                    OrdersMaintenance.IdService == current_user.IdService
                    and OrderStatus.OrderStatus == 'pending').all()
            ServiceItems = db.session.query(Service).all()
            OrderStatusItems = db.session.query(OrderStatus).all()
            PriorityItems = db.session.query(Priority).all()
            TimeItems = db.session.query(Time).all()
            return render_template('orders.html',
                                   OrdersItemsGeo=OrdersItemsGeo,
                                   OrderStatusItems=OrderStatusItems,
                                   ServiceItems=ServiceItems,
                                   PriorityItems=PriorityItems,
                                   TimeItems=TimeItems)
    except Exception as err:
        return render_template('orders.html')
def get_dist(buildings, image, big_image, westernmost, northernmost,
             southernmost, easternmost, pos_tl):

    dist_matrix = np.zeros((len(buildings), len(buildings)))
    for i in range(len(buildings)):
        for j in range(i + 1, len(buildings)):
            mask1 = np.zeros((image.shape[0], image.shape[1]))
            mask2 = np.zeros((image.shape[0], image.shape[1]))
            cv2.fillPoly(mask1, [np.array(buildings[i]['xy'])], 1)
            cv2.fillPoly(mask2, [np.array(buildings[j]['xy'])], 1)
            dist1 = scipy.ndimage.distance_transform_edt(1 - mask1)
            dist2 = scipy.ndimage.distance_transform_edt(1 - mask2)

            closest_pixel1 = np.unravel_index(np.where(dist2 * mask1 == 0, 10**12, dist2 * mask1).argmin(), \
                                              mask1.shape)
            closest_pixel2 = np.unravel_index(np.where(dist1 * mask2 == 0, 10**12, dist1 * mask2).argmin(), \
                                              mask1.shape)

            long1 = westernmost + (closest_pixel1[0] + pos_tl[0]) * (
                easternmost - westernmost) / big_image.shape[0]
            lat1 = northernmost - (closest_pixel1[1] + pos_tl[1]) * (
                northernmost - southernmost) / big_image.shape[1]

            long2 = westernmost + (closest_pixel2[0] + pos_tl[0]) * (
                easternmost - westernmost) / big_image.shape[0]
            lat2 = northernmost - (closest_pixel2[1] + pos_tl[1]) * (
                northernmost - southernmost) / big_image.shape[1]

            dist = mpu.haversine_distance((lat1, long1), (lat2, long2)) * 1000

            dist_matrix[i, j] = dist
            dist_matrix[j, i] = dist

    return dist_matrix
示例#5
0
def get_users_distance_distr_from_home(city, outfolder):

    print(city + ' --  distance of users locations and home...')

    users_home = {}
    users_venues = {}
    user_dist = {}

    for line in open(outfolder + 'user_info/' + city +
                     '_groundtruth_home_locations_unique.dat'):
        user, lng, lat, venue = line.strip().split('\t')
        lng, lat = float(lng), float(lat)
        users_home[user] = (lng, lat)

    for line in open(outfolder + '/user_info/' + city +
                     '_user_venues_full.dat'):
        fields = (line.strip().split('\t'))
        user = fields[0]

        if user in users_home and user not in user_dist:

            venues = [(float(vv.split(',')[1]), float(vv.split(',')[2]),
                       vv.split(',')[0]) for vv in fields[1:]]

            for (lngv, latv, venue) in venues:
                user_dist[user] = mpu.haversine_distance(
                    (latv, lngv), (users_home[user][1], users_home[user][0]))

    users_num_homes = []
    for ind, line in enumerate(
            open(outfolder + 'user_info/' + city +
                 '_user_venues_full_locals_filtered.dat')):
        #if ind == 100: break

        users_num_homes.append(len(line.strip().split(
            '\t')))  # (len(line.strip().split('\t')[1:])/3.0)

    f, ax = plt.subplots(1, 3, figsize=(18, 5))

    ax[0].hist(users_num_homes, bins=60)
    ax[0].set_xlabel('Users\'s number of venues', fontsize=12)
    ax[0].set_yscale('log')

    ax[1].hist([d for d in users_num_homes if d < 50], bins=20)
    ax[1].set_xlabel('Users\'s number of venues', fontsize=12)
    ax[1].set_yscale('log')

    ax[2].hist([d for d in list(user_dist.values()) if d > 0.0 and d < 10.0],
               bins=60,
               alpha=0.8)
    ax[2].set_xlabel(
        'Users\'s locations\' distances from their home location [km]',
        fontsize=12)

    plt.show()

    plt.savefig(outfolder + 'figures/' + city +
                '_distances_from_home_locations.png')
    print('Figure saved.')
    plt.close()
def get_differences(fout, city, outroot, resfile, users_homes, LIMIT_, eps_,
                    mins_):

    users_centroids = {}
    dists = []

    for line in open(resfile):
        user, lng, lat = line.strip().split()
        if user in users_homes:

            lng1 = float(lng)
            lat1 = float(lat)

            lng2 = users_homes[user][0]
            lat2 = users_homes[user][1]

            dists.append(mpu.haversine_distance((lat1, lng1), (lat2, lng2)))

    fout = open(
        outroot +
        'user_homes/optimize_centroids/series/dbscan_opt_limit_series_' +
        str(eps_) + '_' + str(mins_) + '.dat', 'a')
    fout.write(str(LIMIT_) + '\t' + str(np.mean(dists)) + '\n')
    fout.close()

    return users_centroids
def insert_metric():
    try:
        url = 'http://127.0.0.1:31311/'
        head = {'Content-type': 'application/json'}
        date = time.strftime("%Y-%m-%d")
        filename = logpath + "inputmetric_" + date + ".cvs"
        geofile = logpath + "geodistance_" + date + ".txt"
        idnode = request.json['idnode']
        sequencenum = request.json['sequencenum']
        snr = str(request.json['snr'])
        rssi = str(request.json['rssi'])
        temperature = str(request.json['temperature'])
        umidity = str(request.json['umidity'])
        latitude = str(request.json['latitude'])
        longitude = str(request.json['longitude'])
        nodelocation = latitude + "," + longitude
        delay = str(request.json['delay'])
        lorasetup = str(request.json['lorasetup'])
        packetsize = str(request.json['packetsize'])
        expid = str(request.json['experimentid'])
        gwlocation = str(request.json['gw-location'])
        gwlat = str(gwlocation.split(",")[0])
        gwlon = str(gwlocation.split(",")[1])
        txpower = request.json['txpower']
        throughput = (float(packetsize) * float(delay)) / 1000
        rssifile = exppath + "rssi_" + expid + "_" + date + ".csv"
        snrfile = exppath + "snr_" + expid + "_" + date + ".csv"
        delayfile = exppath + "delay_" + expid + "_" + date + ".csv"
        thougfile = exppath + "throughput_" + expid + "_" + date + ".csv"
        timestamp = str(datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
        dist = mpu.haversine_distance((float(latitude), float(longitude)),
                                      (float(gwlat), float(gwlon))) * 1000
        payload = {'sensorId':idnode,'sequenceNumber':sequencenum,'snr':snr,'rssi':rssi, \
                   'temperature':temperature,'umidity':umidity,'node-location':nodelocation,\
                   'time':timestamp,'delay':delay,'lorasetup':lorasetup,'packetsize':packetsize,'experimentid':expid,'gw-location':gwlocation,'txpower':txpower,'throughput':throughput}
        res = requests.post(url, data=json.dumps(payload), headers=head)
        logger.info("expid: " + expid + " sequencenum: " + sequencenum +
                    " res: " + res)
        with open(filename, "aw") as fo:
            fo.write(timestamp + "," + idnode + "," + sequencenum + "," + snr +
                     "," + rssi + "," + temperature + "," + umidity + "," +
                     nodelocation + "," + delay + "," + lorasetup + "," +
                     packetsize + "," + expid + "," + gwlocation + "," +
                     txpower + "," + str(throughput) + "\n")
        with open(geofile, "aw") as geo:
            geo.write(timestamp + "," + "EXPID: " + expid + "," +
                      "DISTANCE: " + str(dist) + "\n")
        with open(rssifile, "aw") as rssiFile:
            rssiFile.write(timestamp + "," + rssi + "," + str(dist) + "\n")
        with open(snrfile, "aw") as snrFile:
            snrFile.write(timestamp + "," + snr + "," + str(dist) + "\n")
        with open(delayfile, "aw") as delayFile:
            delayFile.write(timestamp + "," + snr + "," + str(dist) + "\n")
        with open(thougfile, "aw") as througFile:
            througFile.write(timestamp + "," + str(throughput) + "," +
                             str(dist) + "\n")

    except Exception, inst:
        print(inst)
        logger.error(inst)
def get_points_avg_dist(users_coordinates):

    points_distance = {}
    # c = [(x1, x2, ...), (y1, y2, ...)]

    for u, c in users_coordinates.items():

        for c1 in (list(zip(*c))):

            c1str = '_'.join(list([str(fff) for fff in c1]))

            for c2 in (list(zip(*c))):
                if c1 != c2:
                    distance = mpu.haversine_distance((c1[1], c1[0]),
                                                      (c2[1], c2[0]))

                    if c1str not in points_distance:
                        points_distance[c1str] = distance
                    else:
                        points_distance[c1str] += distance

            if c1str in points_distance:
                points_distance[c1str] = points_distance[c1str] / len(c[1])
            else:
                points_distance[c1str] = 0.0

    return points_distance
示例#9
0
 def _get_position_distance(self, first_pos, second_pos):
     """
         Get distance between two points on earth
     """
     dist = mpu.haversine_distance((first_pos.as_tuple()),
                                   (second_pos.as_tuple()))
     return dist * 1000
示例#10
0
def add_distances_to_edges(G, avg_dist):

    distances     = []
    inv_distances = []
    exp_dist      = []
    grav_dist     = []


    for i, e in enumerate(G.es()):

    
        target = G.vs[e.target]
        source = G.vs[e.source]

        if target['name'] != source['name']:

            target_loc = target['location']           
            source_loc = source['location']      

       
        dist    =  mpu.haversine_distance((target_loc[1], target_loc[0]), (source_loc[1], source_loc[0]))
        if dist == 0: dist = 0.0000000000000000000001


        distances.append(     dist       )
        inv_distances.append( dist**(-1) )
        grav_dist.append(     dist**(-2) )
        exp_dist.append(      math.exp( - 1.0 * dist / avg_dist) )


    G.es['distances']      = distances
    G.es['inv_distances']  = inv_distances
    G.es['grav_distances'] = grav_dist
    G.es['exp_distances']  = exp_dist
    def find_many_by_filter(cls: Type[T], filter_query, query_values) -> List[T]:
        query_function = {}
        is_distance = False
        for idx, filter in enumerate(filter_query):
            query_string = ""
            distance = ''
            if filter == "creation_date":
                earliest = datetime.fromisoformat(query_values[idx][0])
                latest = datetime.fromisoformat(query_values[idx][1])
                query = {"$gte": earliest, "$lte": latest}
                query_function[filter] = query
            elif filter == 'distance':
                distance = query_values[idx]
                is_distance = True
            else:
                filter_temp = filter
                temp = query_values[idx]
                query_function[filter_temp] = temp

        if is_distance == True:
            result = []
            elements = [cls(**elem) for elem in Database.find(cls.collection, query_function)]
            for element in elements:
                latt, long = element.loc
                distance_ = mpu.haversine_distance((long,latt), (-4.14127,50.3755))
                if distance_ > float(distance):
                    result.append(element)
        else:
            result = [cls(**elem)for elem in Database.find(cls.collection, query_function)]

        return result
示例#12
0
def getNearestStation(latitude, longitude, stations):
    '''
    Params:
    -latitude: (FLOAT) latitude of coordinate
    -longitude: (FLOAT) longitude of coordinate
    -stations: ([SeismicStation]) array of seismic stations to search through

    Returns:
    -A SeismicStation object representing the closest seismic station to the given coordinate
    '''
    if len(stations) == 0 or not stations[0].network or not stations[0].station:
        raise Exception("stations must be a valid SeismicStation array")
    elif len(stations) == 1:
        return stations[0]

    test_coordinate = (latitude, longitude)

    nearest_station = stations[0]
    nearest_distance = math.inf
    for station in stations[1:]:
        station_coordinate = (station.latitude, station.longitude)
        try:
            distance = mpu.haversine_distance(test_coordinate, station_coordinate)
        except:
            continue
        if distance < nearest_distance:
            nearest_station = station
            nearest_distance = distance
    return nearest_station
示例#13
0
def test_haversine():
    with pytest.raises(ValueError):
        haversine_distance((-200, 0), (0, 0))
    with pytest.raises(ValueError):
        haversine_distance((0, -200), (0, 0))
    with pytest.raises(ValueError):
        haversine_distance((0, 0), (-200, 0))
    with pytest.raises(ValueError):
        haversine_distance((0, 0), (0, -200))
示例#14
0
def findmaxdist(list_coords):
    ''' implements the SpatialMinimality "CentroidDistance" 
    if verbosity >= 3:
        print ("findmaxdist", list_coords)
    '''
    (cx, cy) = centroid_coords2(list_coords)
    maxdist = 0

    for (x, y) in list_coords:
        cdist = mpu.haversine_distance((cx, cy), (x, y))
        if cdist >= maxdist:
            maxdist = cdist
            (mx, my) = (x, y)
    if verbosity >= 3:
        print("mx, my, cx, cy, dist", (mx, my), (cx, cy),
              mpu.haversine_distance((mx, my), (cx, cy)))
    return mpu.haversine_distance((mx, my), (cx, cy))
def get_distance_in_miles(home_team_zip, away_team_zip):        
    
    #for extensive list of zipcodes, set simple_zipcode=False
    search = SearchEngine(simple_zipcode=True)
    zip1 = search.by_zipcode(home_team_zip)
    zip2 = search.by_zipcode(away_team_zip)

    return round(mpu.haversine_distance((zip1.lat, zip1.lng), (zip2.lat, zip2.lng)), 2)
def get_distance_from_groundtruth(methods_homes, groundtruth_homes, city, outfolder):

    homedistances_users_methods = {}


    for user, home in groundtruth_homes.items():
        if user in methods_homes:
            for method, home_ in methods_homes[user].items():
                if user not in homedistances_users_methods:
                    homedistances_users_methods[user] = {}

                dist =  mpu.haversine_distance((home[1], home[0]), (home_[1], home_[0])) 

                homedistances_users_methods[user][method] =  mpu.haversine_distance((home[1], home[0]), (home_[1], home_[0])) 


    return pd.DataFrame.from_dict(homedistances_users_methods, orient = 'index')
示例#17
0
def agg_fun1(data):
    locations = data['locations']
    locs = []
    locs_d = dict()
    for i in range(0, len(locations)):
        l = locations[str(i)]
        locs.append(l)
        if l["address"] not in locs_d:
            locs_d[l["address"]] = []
        locs_d[l["address"]].append(
            (l["latitude"], l["longitude"], l["accuracy"]))

    print(f'found {len(locs_d)} locations')

    aggr_loc = []
    for addr in locs_d:
        if addr == "Unknown":
            continue

        l = locs_d[addr]
        lat = 0
        lon = 0
        acc = 0
        for entry in l:
            lat += entry[0]
            lon += entry[1]
            acc += entry[2]

        lat /= len(l)
        lon /= len(l)
        acc /= len(l)

        if acc < 100:
            aggr_loc.append([addr, lat, lon, acc, len(l), True, 1, len(l)])

    for i in range(0, len(aggr_loc)):
        for j in range(i + 1, len(aggr_loc)):
            src = aggr_loc[i]
            dest = aggr_loc[j]
            if src[5] == False or dest[5] == False:
                continue

            cross_addr_dist = mpu.haversine_distance((src[1], src[2]),
                                                     (dest[1], dest[2])) * 1000
            if cross_addr_dist < ((src[3] + dest[3]) / 2):
                # print(f'clustering {src[0]} and {dest[0]} as they are {cross_addr_dist} apart s0 {src[3]} d0 {dest[3]}')
                if src[4] >= dest[4]:
                    dest[5] = False
                    src[6] += dest[6]
                    src[7] += dest[4]
                else:
                    src[5] = False
                    dest[6] += src[6]
                    dest[7] += src[4]

    for entry in aggr_loc:
        if entry[5]:
            print(entry)
示例#18
0
def distance_between_gps(gps_one, gps_two):
    km_distance = mpu.haversine_distance((gps_one[0], gps_one[1]),
                                         (gps_two[0], gps_two[1]))

    if km_distance < 0:
        print('got negative distance that\'s weak')
        km_distance *= -1

    return km_distance
示例#19
0
文件: main.py 项目: verpokl/Capstone
def getLocation(startLoc):
                                                                  # get gps coordinates from start location
    data = gpsd.next() 
                                                                  # verify gps data
    if loc['class'] == 'TPV':
                                                                  # pull gps data as [lon, lan]
        loc = [getattr(loc,'lon'), 'unknown'], getattr(loc, 'lat', 'unknown')]
        time.sleep(1.0)                                           # wait one second to debounce switch
        return loc, mpu.haversine_distance(startLoc, loc)         # return [lon, lat], distance
示例#20
0
def closest_movies_to_the_user(latitude: str, longitude: str, year: str) -> dict:
    """
    returns the dictionary with the ten closest movies
    to the specified user location
    """
    coordinates = films_coordinates(year)
    user_coordinate = (latitude, longitude)
    sorted_films = sorted(coordinates.items(), key= lambda x: mpu.haversine_distance(x[1], user_coordinate))
    return sorted_films[:10]
示例#21
0
 def get_venue_capacity(self, venue_name, expected_lat, expected_long):
     #_, metro_area, _ = self.get_songkick_city_and_metro_region(expected_lat, expected_long)
     #if pd.isna(metro_area):
     query = venue_name
     row_default = {
         'venue_capacity': None,
         'venue_name': venue_name,
         'venue_fuzzwuzz_score': 0,
         'venue_city': None,
         'venue_country': None,
         'venue_lat': None,
         'venue_long': None,
         'venue_dist_from_expected': None
     }
     # else:
     #     query = venue_name + ' ' + metro_area
     venues_info = json.loads(
         self.req.get(self.base + 'venues.json?query=' + query +
                      self.default_params).content)
     if venues_info['resultsPage']['status'] == 'ok' and len(
             venues_info['resultsPage']['results']) > 0:
         venues = venues_info['resultsPage']['results']['venue']
         venue_cont = []
         for venue in venues:
             row = row_default.copy()
             row['venue_capacity'] = venue[
                 'capacity'] if 'capacity' in venue else None
             row['venue_name'] = venue['displayName']
             row['venue_fuzzwuzz_score'] = fuzz.token_set_ratio(
                 venue_name, row['venue_name'])
             row['venue_city'] = venue['city']['displayName']
             row['venue_country'] = venue['city']['country']['displayName']
             if venue['lat'] and venue['lng']:
                 row['venue_lat'] = venue['lat']
                 row['venue_long'] = venue['lng']
                 row['venue_dist_from_expected'] = mpu.haversine_distance(
                     (venue['lat'], venue['lng']),
                     (expected_lat, expected_long))
             else:
                 continue
             venue_cont.append(pd.Series(row))
         if len(venue_cont) == 0:
             return pd.Series(row_default)
         venue_df = pd.concat(venue_cont, axis=1).T
         possible_matches = venue_df.loc[
             venue_df['venue_dist_from_expected'] <
             10, :]  #should be less than 1 km from expected loc
         if possible_matches.shape[0] > 0:
             return possible_matches.sort_values(
                 ['venue_fuzzwuzz_score', 'venue_capacity'],
                 ascending=False).iloc[0].copy()
         else:
             return pd.Series(row_default)
     else:
         print('SK Status not ok!')
         print(venues_info)
         return pd.Series(row_default)
def calculateDistance(zip1, zip2):
    zipcode1 = zipcodes.matching(str(zip1))
    zipcode2 = zipcodes.matching(str(zip2))
    z1 = (float(zipcode1[0]["lat"]), float(zipcode1[0]["long"]))
    z2 = (float(zipcode2[0]["lat"]), float(zipcode2[0]["long"]))

    dist = mpu.haversine_distance(z1, z2)

    dist = round((dist / 2) + (((dist / 2)) / 4), 2)
    return dist
示例#23
0
def check_close(username, coords):
    users = db.users.find()
    for user in users:
        if (user.get("currentLocation",
                     False)) and (user["username"] != username):
            if (mpu.haversine_distance(
                    coords, (float(user["currentLocation"][0]),
                             float(user["currentLocation"][1]))) < 0.02):
                add_intersection(username, user["username"], coords[0],
                                 coords[1])
示例#24
0
    def _get_points_dist(self, id_tuple, home, strava_out):

        points = self._get_waypoints(id_tuple[0], id_tuple[1], home,
                                     strava_out)
        sum_distances = []
        i = 0
        while i < len(points) - 1:
            sum_distances.append(
                mpu.haversine_distance(points[i], points[i + 1]))
            i += 1
        return [points, sum(sum_distances)]
示例#25
0
def nearby_locations(films, position, number):
    """The function sorts the list of films by
    distance to a given point, and returns a
    certain number of the closest ones.

    (list, list, int) -> list
    """
    for film in films:
        film["distance"] = mpu.haversine_distance(position, film['coords'])
    films.sort(key=lambda x: x["distance"])
    return films[0:number]
示例#26
0
def closest_films_locations(longtitude: float, latitude: float, year: int) -> dict:
    """
    A function for getting a sorted dictionary of films
    and location (sorting elements by haversine_distance)
    """
    film_location = location_to_coordinates(year)
    current_point = latitude, longtitude
    distance_haver = lambda x: mpu.haversine_distance(current_point, x[1])
    tp_by_haversine = sorted(film_location.items(), key=distance_haver)
    closest_points = {k: v for k, v in tp_by_haversine}
    return closest_points
示例#27
0
def decide_next_action(pose, distace_tolerance, heading_torelance):
    # decide the next action from current robot status and the next waypoint
    current_point = np.array([pose[1], pose[0]])
    current_yaw = pose[2]

    diff_distance = round(
        mpu.haversine_distance(current_point, BIWAKO.next_goal), 5) * 1000
    e_dis.append(diff_distance)
    # check distance between current and target
    if abs(diff_distance) < distace_tolerance:
        ch = 4
        pwm = 1500
        action = [ch, pwm]
        print("achieve the target point")
        print("########################")
        print("########################")
        if BIWAKO.way_point_num != -1:
            BIWAKO.update_next_goal()
            print("change waypoint")
            print("next way point: ", BIWAKO.next_goal)
        elif BIWAKO.way_point_num == -1:
            ch = 4
            pwm = 1500
            action = [ch, pwm]
            print("Mission complete")
        else:
            ch = 4
            pwm = 1500
            action = [ch, pwm]
            print("Way point error")
        return action
    # when the device has not received
    else:
        target_direction = math.radians(
            calculator.calculate_bearing(current_point, BIWAKO.next_goal))
        diff_deg = math.degrees(
            calculator.limit_angle(target_direction - current_yaw))
        e_deg.append(diff_deg)
        if abs(diff_deg) < heading_torelance:
            ch = 5
            pwm = PD_control_dis(diff_distance)
            print("Straight")
        elif diff_deg >= heading_torelance:
            ch = 4
            pwm = PD_control_deg(diff_deg)
            print("Turn right")
        elif diff_deg < -1.0 * heading_torelance:
            ch = 4
            pwm = PD_control_deg(diff_deg)
            print("Turn left")
        action = [ch, pwm]
        print("diff: ", diff_deg)
    return action
示例#28
0
    def _parse_gpx(self, gpx_filePath):
        """
                parses the gpx
            """

        gpx_file = open(gpx_filePath, 'r')
        gpx = gpxpy.parse(gpx_file)
        gpx = gpx.to_xml()

        reLat = r'lat="[-+]?[0-9]{2,3}(?:(?:\.[0-9]+)|(?:[0-9]+))"'
        reLon = r'lon="[-+]?[0-9]{2,3}(?:(?:\.[0-9]+)|(?:[0-9]+))"'
        eleV = r"<ele>[0-9]\d*.[0-9]+"
        reTime = r'(\d{4}-\d{2}-\d{2}T\d{2}:\d{2}:\d{2})'

        all_lat = [float(latval[5:-1]) for latval in re.findall(reLat, gpx)]
        all_lon = [float(lonval[5:-1]) for lonval in re.findall(reLon, gpx)]

        all_time = [
            dt.strptime(timeval, "%Y-%m-%dT%H:%M:%S")
            for timeval in re.findall(reTime, gpx)[1:]
        ]
        all_ele = [float(elval[5:]) for elval in re.findall(eleV, gpx)]

        self.lat = all_lat
        self.lon = all_lon
        self.ele = all_ele

        for i in range(0, len(all_lat) - 1):

            pt_1 = (all_lat[i], all_lon[i])
            pt_2 = (all_lat[i + 1], all_lon[i + 1])

            curr_breaing = int(
                self._calculate_initial_compass_bearing(pt_1, pt_2))
            self.bearing.append(curr_breaing)

            curr_duration = (all_time[i + 1] - all_time[i]).total_seconds()
            self.duration.append(int(curr_duration))

            curr_distance = round(mpu.haversine_distance(pt_1, pt_2) * 1000, 2)
            self.distance.append(curr_distance)

            if curr_distance == 0 or curr_duration == 0:
                self.speed.append(0.0)
            else:
                self.speed.append(round(curr_distance / curr_duration, 3))

            self.time.append(all_time[i].strftime("%m/%d/%Y-%H:%M:%S"))

        # we remove the last point from lat/lon/ele
        self.lat = self.lat[:-1]
        self.lon = self.lon[:-1]
        self.ele = self.ele[:-1]
示例#29
0
def distance(zip1, zip2):
    x = data.loc[data['ZipCode'] == zip1].index
    y = data.loc[data['ZipCode'] == zip2].index
    #reads the lat and long data from our zipcode data
    lat1 = data.iloc[x[0]]['Latitude']
    lon1 = data.iloc[x[0]]['Longitude']
    lat2 = data.iloc[y[0]]['Latitude']
    lon2 = data.iloc[y[0]]['Longitude']
    kmconstant = .621371
    dist = mpu.haversine_distance((lat1, lon1), (lat2, lon2))
    #returns distance in miles
    return dist * kmconstant
示例#30
0
def cal_speed(lat1, lon1, lat2, lon2, time):
    """Calculate the single speed between two points by using mpu

        :param lat1: start point latitude
        :param lon1: start point longitude
        :param lat2: end point latitude
        :param lon2: end point longitude
        :param time: time interval (second)
        :return: speed , float
    """
    dist = mpu.haversine_distance((lat1, lon1), (lat2, lon2)) * 1000
    res = dist / time
    return res