示例#1
0
def _run_fusion_training(sets, logger, hparams, min_val_images, is_validation,
                         views, n_classes, unet, fusion_model, early_stopping,
                         fm_batch_size, epochs, eval_prob,
                         fusion_weights_path):

    for _round, _set in enumerate(sets):
        s = "Set %i/%i:\n%s" % (_round + 1, len(sets), _set)
        logger("\n%s" % highlighted(s))

        # Reload data
        images = ImagePairLoader(**hparams["val_data"])
        if len(images) < min_val_images:
            images.add_images(ImagePairLoader(**hparams["train_data"]))

        # Get list of ImagePair objects to run on
        image_set_dict = {m.id: m for m in images if m.id in _set}

        # Fetch points from the set images
        points_collection = []
        targets_collection = []
        N_im = len(image_set_dict)
        for num_im, image_id in enumerate(list(image_set_dict.keys())):
            logger("")
            logger(
                highlighted("(%i/%i) Running on %s (%s)" %
                            (num_im + 1, N_im, image_id,
                             "val" if is_validation[image_id] else "train")))

            # Set the current ImagePair
            image = image_set_dict[image_id]
            images.images = [image]

            # Load views
            kwargs = hparams["fit"]
            kwargs.update(hparams["build"])
            seq = images.get_sequencer(views=views, **kwargs)

            # Get voxel grid in real space
            voxel_grid_real_space = get_voxel_grid_real_space(image)

            # Get array to store predictions across all views
            targets = image.labels.reshape(-1, 1)
            points = np.empty(shape=(len(targets), len(views), n_classes),
                              dtype=np.float32)
            points.fill(np.nan)

            # Predict on all views
            for k, v in enumerate(views):
                print("\n%s" % "View: %s" % v)
                points[:, k, :] = predict_and_map(
                    model=unet,
                    seq=seq,
                    image=image,
                    view=v,
                    voxel_grid_real_space=voxel_grid_real_space,
                    n_planes='same+20',
                    targets=targets,
                    eval_prob=eval_prob).reshape(-1, n_classes)

            # Clean up a bit
            del image_set_dict[image_id]
            del image  # Should be GC at this point anyway

            # add to collections
            points_collection.append(points)
            targets_collection.append(targets)

        # Stack points into one matrix
        logger("Stacking points...")
        X, y = stack_collections(points_collection, targets_collection)

        # Shuffle train
        print("Shuffling points...")
        X, y = shuffle(X, y)

        print("Getting validation set...")
        val_ind = int(0.20 * X.shape[0])
        X_val, y_val = X[:val_ind], y[:val_ind]
        X, y = X[val_ind:], y[val_ind:]

        # Prepare dice score callback for validation data
        val_cb = ValDiceScores((X_val, y_val), n_classes, 50000, logger)

        # Callbacks
        cbs = [
            val_cb,
            CSVLogger(filename="logs/fusion_training.csv",
                      separator=",",
                      append=True),
            PrintLayerWeights(fusion_model.layers[-1],
                              every=1,
                              first=1000,
                              per_epoch=True,
                              logger=logger)
        ]

        es = EarlyStopping(monitor='val_dice',
                           min_delta=0.0,
                           patience=early_stopping,
                           verbose=1,
                           mode='max')
        cbs.append(es)

        # Start training
        try:
            fusion_model.fit(X,
                             y,
                             batch_size=fm_batch_size,
                             epochs=epochs,
                             callbacks=cbs,
                             verbose=1)
        except KeyboardInterrupt:
            pass
        fusion_model.save_weights(fusion_weights_path)
示例#2
0
def predict_single(image, model, hparams, verbose=1):
    """
    A generic prediction function that sets up a ImagePairLoader object for the
    given image, prepares the image and predicts.

    Note that this function should only be used for convinience in scripts that
    work on single images at a time anyway, as batch-preparing the entire
    ImagePairLoader object prior to prediction is faster.

    NOTE: Only works with iso_live intrp modes at this time
    """
    mode = hparams["fit"]["intrp_style"].lower()
    assert mode in ("iso_live", "iso_live_3d")

    # Prepare image for prediction
    kwargs = hparams["fit"]
    kwargs.update(hparams["build"])

    # Set verbose memory
    verb_mem = kwargs["verbose"]
    kwargs["verbose"] = verbose

    # Create a ImagePairLoader with only the given file
    from mpunet.image import ImagePairLoader
    image_pair_loader = ImagePairLoader(predict_mode=True,
                                        initialize_empty=True,
                                        no_log=bool(verbose))
    image_pair_loader.add_image(image)

    # Get N classes
    n_classes = kwargs["n_classes"]

    if mode == "iso_live":
        # Add views if SMMV model
        kwargs["views"] = np.load(hparams.project_path + "/views.npz")["arr_0"]

        # Get sequence object
        sequence = image_pair_loader.get_sequencer(**kwargs)

        # Get voxel grid in real space
        voxel_grid_real_space = get_voxel_grid_real_space(image)

        # Prepare tensor to store combined prediction
        d = image.image.shape
        predicted = np.empty(shape=(len(kwargs["views"]), d[0], d[1], d[2],
                                    n_classes),
                             dtype=np.float32)
        print("Predicting on brain hyper-volume of shape:", predicted.shape)

        for n_view, v in enumerate(kwargs["views"]):
            print("\nView %i/%i: %s" % (n_view + 1, len(kwargs["views"]), v))
            # Sample the volume along the view
            X, y, grid, inv_basis = sequence.get_view_from(image.id,
                                                           v,
                                                           n_planes="same+20")

            # Predict on volume using model
            pred = predict_volume(model, X, axis=2)

            # Map the real space coordiante predictions to nearest
            # real space coordinates defined on voxel grid
            predicted[n_view] = map_real_space_pred(pred,
                                                    grid,
                                                    inv_basis,
                                                    voxel_grid_real_space,
                                                    method="nearest")
    else:
        predicted = pred_3D_iso(
            model=model,
            sequence=image_pair_loader.get_sequencer(**kwargs),
            image=image,
            extra_boxes="3x",
            min_coverage=None)

    # Revert verbose mem
    kwargs["verbose"] = verb_mem

    return predicted
示例#3
0
def entry_func(args=None):

    # Get command line arguments
    args = vars(get_argparser().parse_args(args))
    base_dir = os.path.abspath(args["project_dir"])
    _file = args["f"]
    label = args["l"]
    N_extra = args["extra"]
    try:
        N_extra = int(N_extra)
    except ValueError:
        pass

    # Get settings from YAML file
    from mpunet.hyperparameters import YAMLHParams
    hparams = YAMLHParams(os.path.join(base_dir, "train_hparams.yaml"))

    # Set strides
    hparams["fit"]["strides"] = args["strides"]

    if not _file:
        try:
            # Data specified from command line?
            data_dir = os.path.abspath(args["data_dir"])

            # Set with default sub dirs
            hparams["test_data"] = {
                "base_dir": data_dir,
                "img_subdir": "images",
                "label_subdir": "labels"
            }
        except (AttributeError, TypeError):
            data_dir = hparams["test_data"]["base_dir"]
    else:
        data_dir = False
    out_dir = os.path.abspath(args["out_dir"])
    overwrite = args["overwrite"]
    predict_mode = args["no_eval"]
    save_only_pred = args["save_only_pred"]

    # Check if valid dir structures
    validate_folders(base_dir, data_dir, out_dir, overwrite)

    # Import all needed modules (folder is valid at this point)
    import numpy as np
    from mpunet.image import ImagePairLoader, ImagePair
    from mpunet.utils import get_best_model, create_folders, \
                                    pred_to_class, await_and_set_free_gpu, set_gpu
    from mpunet.utils.fusion import predict_3D_patches, predict_3D_patches_binary, pred_3D_iso
    from mpunet.logging import init_result_dict_3D, save_all_3D
    from mpunet.evaluate import dice_all
    from mpunet.bin.predict import save_nii_files

    # Fetch GPU(s)
    num_GPUs = args["num_GPUs"]
    force_gpu = args["force_GPU"]
    # Wait for free GPU
    if force_gpu == -1:
        await_and_set_free_gpu(N=num_GPUs, sleep_seconds=240)
    else:
        set_gpu(force_gpu)

    # Read settings from the project hyperparameter file
    dim = hparams["build"]["dim"]
    n_classes = hparams["build"]["n_classes"]
    mode = hparams["fit"]["intrp_style"]

    # Set ImagePairLoader object
    if not _file:
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            **hparams["test_data"])
    else:
        predict_mode = not bool(label)
        image_pair_loader = ImagePairLoader(predict_mode=predict_mode,
                                            initialize_empty=True)
        image_pair_loader.add_image(ImagePair(_file, label))

    # Put them into a dict and remove from image_pair_loader to gain more control with
    # garbage collection
    all_images = {image.id: image for image in image_pair_loader.images}
    image_pair_loader.images = None
    """ Define UNet model """
    from mpunet.models import model_initializer
    hparams["build"]["batch_size"] = 1
    unet = model_initializer(hparams, False, base_dir)
    model_path = get_best_model(base_dir + "/model")
    unet.load_weights(model_path)

    # Evaluate?
    if not predict_mode:
        # Prepare dictionary to store results in pd df
        results, detailed_res = init_result_dict_3D(all_images, n_classes)

        # Save to check correct format
        save_all_3D(results, detailed_res, out_dir)

    # Define result paths
    nii_res_dir = os.path.join(out_dir, "nii_files")
    create_folders(nii_res_dir)

    image_ids = sorted(all_images)
    for n_image, image_id in enumerate(image_ids):
        print("\n[*] Running on: %s" % image_id)

        # Set image_pair_loader object with only the given file
        image = all_images[image_id]
        image_pair_loader.images = [image]

        seq = image_pair_loader.get_sequencer(n_classes=n_classes,
                                              no_log=True,
                                              dim=dim,
                                              **hparams["fit"])

        if mode.lower() == "iso_live_3d":
            pred = pred_3D_iso(model=unet,
                               sequence=seq,
                               image=image,
                               extra_boxes=N_extra,
                               min_coverage=None)
        else:
            # Predict on volume using model
            if n_classes > 1:
                pred = predict_3D_patches(model=unet,
                                          patches=seq,
                                          image=image,
                                          N_extra=N_extra)
            else:
                pred = predict_3D_patches_binary(model=unet,
                                                 patches=seq,
                                                 image_id=image_id,
                                                 N_extra=N_extra)

        if not predict_mode:
            # Get patches for the current image
            y = image.labels

            # Calculate dice score
            print("Mean dice: ", end="", flush=True)
            p = pred_to_class(pred, img_dims=3, has_batch_dim=False)
            dices = dice_all(y, p, n_classes=n_classes, ignore_zero=True)
            mean_dice = dices[~np.isnan(dices)].mean()
            print("Dices: ", dices)
            print("%s (n=%i)" % (mean_dice, len(dices)))

            # Add to results
            results[image_id] = [mean_dice]
            detailed_res[image_id] = dices

            # Overwrite with so-far results
            save_all_3D(results, detailed_res, out_dir)

            # Save results
            save_nii_files(p, image, nii_res_dir, save_only_pred)

        # Remove image from dictionary and image_pair_loader to free memory
        del all_images[image_id]
        image_pair_loader.images.remove(image)

    if not predict_mode:
        # Write final results
        save_all_3D(results, detailed_res, out_dir)