def _run_fusion_training(sets, logger, hparams, min_val_images, is_validation, views, n_classes, unet, fusion_model, early_stopping, fm_batch_size, epochs, eval_prob, fusion_weights_path): for _round, _set in enumerate(sets): s = "Set %i/%i:\n%s" % (_round + 1, len(sets), _set) logger("\n%s" % highlighted(s)) # Reload data images = ImagePairLoader(**hparams["val_data"]) if len(images) < min_val_images: images.add_images(ImagePairLoader(**hparams["train_data"])) # Get list of ImagePair objects to run on image_set_dict = {m.id: m for m in images if m.id in _set} # Fetch points from the set images points_collection = [] targets_collection = [] N_im = len(image_set_dict) for num_im, image_id in enumerate(list(image_set_dict.keys())): logger("") logger( highlighted("(%i/%i) Running on %s (%s)" % (num_im + 1, N_im, image_id, "val" if is_validation[image_id] else "train"))) # Set the current ImagePair image = image_set_dict[image_id] images.images = [image] # Load views kwargs = hparams["fit"] kwargs.update(hparams["build"]) seq = images.get_sequencer(views=views, **kwargs) # Get voxel grid in real space voxel_grid_real_space = get_voxel_grid_real_space(image) # Get array to store predictions across all views targets = image.labels.reshape(-1, 1) points = np.empty(shape=(len(targets), len(views), n_classes), dtype=np.float32) points.fill(np.nan) # Predict on all views for k, v in enumerate(views): print("\n%s" % "View: %s" % v) points[:, k, :] = predict_and_map( model=unet, seq=seq, image=image, view=v, voxel_grid_real_space=voxel_grid_real_space, n_planes='same+20', targets=targets, eval_prob=eval_prob).reshape(-1, n_classes) # Clean up a bit del image_set_dict[image_id] del image # Should be GC at this point anyway # add to collections points_collection.append(points) targets_collection.append(targets) # Stack points into one matrix logger("Stacking points...") X, y = stack_collections(points_collection, targets_collection) # Shuffle train print("Shuffling points...") X, y = shuffle(X, y) print("Getting validation set...") val_ind = int(0.20 * X.shape[0]) X_val, y_val = X[:val_ind], y[:val_ind] X, y = X[val_ind:], y[val_ind:] # Prepare dice score callback for validation data val_cb = ValDiceScores((X_val, y_val), n_classes, 50000, logger) # Callbacks cbs = [ val_cb, CSVLogger(filename="logs/fusion_training.csv", separator=",", append=True), PrintLayerWeights(fusion_model.layers[-1], every=1, first=1000, per_epoch=True, logger=logger) ] es = EarlyStopping(monitor='val_dice', min_delta=0.0, patience=early_stopping, verbose=1, mode='max') cbs.append(es) # Start training try: fusion_model.fit(X, y, batch_size=fm_batch_size, epochs=epochs, callbacks=cbs, verbose=1) except KeyboardInterrupt: pass fusion_model.save_weights(fusion_weights_path)
def predict_single(image, model, hparams, verbose=1): """ A generic prediction function that sets up a ImagePairLoader object for the given image, prepares the image and predicts. Note that this function should only be used for convinience in scripts that work on single images at a time anyway, as batch-preparing the entire ImagePairLoader object prior to prediction is faster. NOTE: Only works with iso_live intrp modes at this time """ mode = hparams["fit"]["intrp_style"].lower() assert mode in ("iso_live", "iso_live_3d") # Prepare image for prediction kwargs = hparams["fit"] kwargs.update(hparams["build"]) # Set verbose memory verb_mem = kwargs["verbose"] kwargs["verbose"] = verbose # Create a ImagePairLoader with only the given file from mpunet.image import ImagePairLoader image_pair_loader = ImagePairLoader(predict_mode=True, initialize_empty=True, no_log=bool(verbose)) image_pair_loader.add_image(image) # Get N classes n_classes = kwargs["n_classes"] if mode == "iso_live": # Add views if SMMV model kwargs["views"] = np.load(hparams.project_path + "/views.npz")["arr_0"] # Get sequence object sequence = image_pair_loader.get_sequencer(**kwargs) # Get voxel grid in real space voxel_grid_real_space = get_voxel_grid_real_space(image) # Prepare tensor to store combined prediction d = image.image.shape predicted = np.empty(shape=(len(kwargs["views"]), d[0], d[1], d[2], n_classes), dtype=np.float32) print("Predicting on brain hyper-volume of shape:", predicted.shape) for n_view, v in enumerate(kwargs["views"]): print("\nView %i/%i: %s" % (n_view + 1, len(kwargs["views"]), v)) # Sample the volume along the view X, y, grid, inv_basis = sequence.get_view_from(image.id, v, n_planes="same+20") # Predict on volume using model pred = predict_volume(model, X, axis=2) # Map the real space coordiante predictions to nearest # real space coordinates defined on voxel grid predicted[n_view] = map_real_space_pred(pred, grid, inv_basis, voxel_grid_real_space, method="nearest") else: predicted = pred_3D_iso( model=model, sequence=image_pair_loader.get_sequencer(**kwargs), image=image, extra_boxes="3x", min_coverage=None) # Revert verbose mem kwargs["verbose"] = verb_mem return predicted
def entry_func(args=None): # Get command line arguments args = vars(get_argparser().parse_args(args)) base_dir = os.path.abspath(args["project_dir"]) _file = args["f"] label = args["l"] N_extra = args["extra"] try: N_extra = int(N_extra) except ValueError: pass # Get settings from YAML file from mpunet.hyperparameters import YAMLHParams hparams = YAMLHParams(os.path.join(base_dir, "train_hparams.yaml")) # Set strides hparams["fit"]["strides"] = args["strides"] if not _file: try: # Data specified from command line? data_dir = os.path.abspath(args["data_dir"]) # Set with default sub dirs hparams["test_data"] = { "base_dir": data_dir, "img_subdir": "images", "label_subdir": "labels" } except (AttributeError, TypeError): data_dir = hparams["test_data"]["base_dir"] else: data_dir = False out_dir = os.path.abspath(args["out_dir"]) overwrite = args["overwrite"] predict_mode = args["no_eval"] save_only_pred = args["save_only_pred"] # Check if valid dir structures validate_folders(base_dir, data_dir, out_dir, overwrite) # Import all needed modules (folder is valid at this point) import numpy as np from mpunet.image import ImagePairLoader, ImagePair from mpunet.utils import get_best_model, create_folders, \ pred_to_class, await_and_set_free_gpu, set_gpu from mpunet.utils.fusion import predict_3D_patches, predict_3D_patches_binary, pred_3D_iso from mpunet.logging import init_result_dict_3D, save_all_3D from mpunet.evaluate import dice_all from mpunet.bin.predict import save_nii_files # Fetch GPU(s) num_GPUs = args["num_GPUs"] force_gpu = args["force_GPU"] # Wait for free GPU if force_gpu == -1: await_and_set_free_gpu(N=num_GPUs, sleep_seconds=240) else: set_gpu(force_gpu) # Read settings from the project hyperparameter file dim = hparams["build"]["dim"] n_classes = hparams["build"]["n_classes"] mode = hparams["fit"]["intrp_style"] # Set ImagePairLoader object if not _file: image_pair_loader = ImagePairLoader(predict_mode=predict_mode, **hparams["test_data"]) else: predict_mode = not bool(label) image_pair_loader = ImagePairLoader(predict_mode=predict_mode, initialize_empty=True) image_pair_loader.add_image(ImagePair(_file, label)) # Put them into a dict and remove from image_pair_loader to gain more control with # garbage collection all_images = {image.id: image for image in image_pair_loader.images} image_pair_loader.images = None """ Define UNet model """ from mpunet.models import model_initializer hparams["build"]["batch_size"] = 1 unet = model_initializer(hparams, False, base_dir) model_path = get_best_model(base_dir + "/model") unet.load_weights(model_path) # Evaluate? if not predict_mode: # Prepare dictionary to store results in pd df results, detailed_res = init_result_dict_3D(all_images, n_classes) # Save to check correct format save_all_3D(results, detailed_res, out_dir) # Define result paths nii_res_dir = os.path.join(out_dir, "nii_files") create_folders(nii_res_dir) image_ids = sorted(all_images) for n_image, image_id in enumerate(image_ids): print("\n[*] Running on: %s" % image_id) # Set image_pair_loader object with only the given file image = all_images[image_id] image_pair_loader.images = [image] seq = image_pair_loader.get_sequencer(n_classes=n_classes, no_log=True, dim=dim, **hparams["fit"]) if mode.lower() == "iso_live_3d": pred = pred_3D_iso(model=unet, sequence=seq, image=image, extra_boxes=N_extra, min_coverage=None) else: # Predict on volume using model if n_classes > 1: pred = predict_3D_patches(model=unet, patches=seq, image=image, N_extra=N_extra) else: pred = predict_3D_patches_binary(model=unet, patches=seq, image_id=image_id, N_extra=N_extra) if not predict_mode: # Get patches for the current image y = image.labels # Calculate dice score print("Mean dice: ", end="", flush=True) p = pred_to_class(pred, img_dims=3, has_batch_dim=False) dices = dice_all(y, p, n_classes=n_classes, ignore_zero=True) mean_dice = dices[~np.isnan(dices)].mean() print("Dices: ", dices) print("%s (n=%i)" % (mean_dice, len(dices))) # Add to results results[image_id] = [mean_dice] detailed_res[image_id] = dices # Overwrite with so-far results save_all_3D(results, detailed_res, out_dir) # Save results save_nii_files(p, image, nii_res_dir, save_only_pred) # Remove image from dictionary and image_pair_loader to free memory del all_images[image_id] image_pair_loader.images.remove(image) if not predict_mode: # Write final results save_all_3D(results, detailed_res, out_dir)