示例#1
0
    def __map_to_downstream(self, mapped_step_name, handler_name, 
                            mapped_steps_gen, workflow, invocation, 
                            message_parameters):
        """A mapping step has completed and has mapped into one or more 
        downstream steps. Queue the downstream steps to be handled and tracked.
        """

        assert invocation.mapped_count is None
        assert invocation.mapped_waiting is None

        mapped_step = mr.models.kv.step.get(workflow, mapped_step_name)

        # This has to be an integer just in case one of the downstream steps 
        # completes before we finish our accounting, here.

        invocation.mapped_waiting = 0
        invocation.save()

        i = 0
        for (k, v) in mapped_steps_gen:
            _logger.debug("Queueing mapping (%d) from invocation [%s].",
                          i, invocation)

            self.__queue_map_step(
                    mapped_step, 
                    (k, v), 
                    message_parameters)

            i += 1

        step_count = i

        # Now, update the number of mapped steps into the invocation. 
        #
        # Because we either decrement or add maximum positive value, and the 
        # value of mapped_waiting will never be glimpsed before decrementing 
        # it, there won't be any chance of a completed step seeing the 
        # mappd_waiting value equal zero more than once (which is our trigger 
        # for a reduction), which will be the very last manipulation it 
        # counters.

        _logger.debug("Invocation [%s] has mapped (%d) steps.", 
                      invocation, step_count)

# TODO(dustin): We might need to check for whether a reduction is necessary 
#               here. By the time we get here, we could've potentially finished 
#               all steps, which nothing else checking for (0) waiting-steps.

        invocation = self.__add_mapped_steps(
                        workflow, 
                        invocation, 
                        step_count)

        _logger.debug("Invocation [%s] has had its counts updated: MC=(%d) "
                      "MW=(%d)", 
                      invocation, invocation.mapped_count, 
                      invocation.mapped_waiting)
示例#2
0
    def package_request(self,
                        workflow,
                        job,
                        step,
                        handler,
                        arguments,
                        context,
                        is_blocking=False):
        """Prepare an incoming request to be processed."""

        invocation = mr.models.kv.invocation.Invocation(
            invocation_id=None,
            workflow_name=workflow.workflow_name,
            step_name=step.step_name,
            direction=mr.constants.D_MAP)

        invocation.save()

        _flow_logger.debug(
            "+ Writing ARGUMENTS dataset for root invocation: "
            "[%s]", invocation)

        dq = mr.models.kv.queues.dataset.DatasetQueue(
            workflow, invocation, mr.models.kv.queues.dataset.DT_ARGUMENTS)

        for (k, v) in arguments:
            data = {
                'p': (k, v),
            }

            dq.add(data)

        request = mr.models.kv.request.Request(
            request_id=None,
            workflow_name=workflow.workflow_name,
            job_name=job.job_name,
            invocation_id=invocation.invocation_id,
            context=context,
            is_blocking=is_blocking)

        request.save()

        _logger.debug("Received request: [%s]", request)

        message_parameters = mr.shared_types.QUEUE_MESSAGE_PARAMETERS_CLS(
            workflow=workflow,
            invocation=invocation,
            request=request,
            job=job,
            step=step,
            handler=handler)

        return message_parameters
示例#3
0
    def __map_to_downstream(self, mapped_step_name, handler_name,
                            mapped_steps_gen, workflow, invocation,
                            message_parameters):
        """A mapping step has completed and has mapped into one or more 
        downstream steps. Queue the downstream steps to be handled and tracked.
        """

        assert invocation.mapped_count is None
        assert invocation.mapped_waiting is None

        mapped_step = mr.models.kv.step.get(workflow, mapped_step_name)

        # This has to be an integer just in case one of the downstream steps
        # completes before we finish our accounting, here.

        invocation.mapped_waiting = 0
        invocation.save()

        i = 0
        for (k, v) in mapped_steps_gen:
            _logger.debug("Queueing mapping (%d) from invocation [%s].", i,
                          invocation)

            self.__queue_map_step(mapped_step, (k, v), message_parameters)

            i += 1

        step_count = i

        # Now, update the number of mapped steps into the invocation.
        #
        # Because we either decrement or add maximum positive value, and the
        # value of mapped_waiting will never be glimpsed before decrementing
        # it, there won't be any chance of a completed step seeing the
        # mappd_waiting value equal zero more than once (which is our trigger
        # for a reduction), which will be the very last manipulation it
        # counters.

        _logger.debug("Invocation [%s] has mapped (%d) steps.", invocation,
                      step_count)

        # TODO(dustin): We might need to check for whether a reduction is necessary
        #               here. By the time we get here, we could've potentially finished
        #               all steps, which nothing else checking for (0) waiting-steps.

        invocation = self.__add_mapped_steps(workflow, invocation, step_count)

        _logger.debug(
            "Invocation [%s] has had its counts updated: MC=(%d) "
            "MW=(%d)", invocation, invocation.mapped_count,
            invocation.mapped_waiting)
示例#4
0
    def package_request(self, workflow, job, step, handler, arguments, 
                        context):
        """Prepare an incoming request to be processed."""

        invocation = mr.models.kv.invocation.Invocation(
                        invocation_id=None,
                        workflow_name=workflow.workflow_name,
                        step_name=step.step_name,
                        direction=mr.constants.D_MAP)

        invocation.save()

        _flow_logger.debug("+ Writing ARGUMENTS dataset for root invocation: "
                           "[%s]", invocation)

        dq = mr.models.kv.queues.dataset.DatasetQueue(
                workflow, 
                invocation,
                mr.models.kv.queues.dataset.DT_ARGUMENTS)

        for (k, v) in arguments:
            data = {
                'p': (k, v),
            }

            dq.add(data)

        request = mr.models.kv.request.Request(
                    request_id=None,
                    workflow_name=workflow.workflow_name,
                    job_name=job.job_name, 
                    invocation_id=invocation.invocation_id,
                    context=context)

        request.save()

        _logger.debug("Received request: [%s]", request)

        message_parameters = mr.shared_types.QUEUE_MESSAGE_PARAMETERS_CLS(
                                workflow=workflow,
                                invocation=invocation,
                                request=request,
                                job=job, 
                                step=step,
                                handler=handler)

        return message_parameters
示例#5
0
    def handle_map(self, message_parameters):
        """Handle one dequeued map job."""

        request = message_parameters.request
        step = message_parameters.step
        invocation = message_parameters.invocation
        workflow = message_parameters.workflow

        _logger.debug("Processing MAP: [%s] [%s]", invocation,
                      invocation.created_timestamp)

        try:
            ## Call the handler.

            _flow_logger.debug(
                "  Reading ARGUMENTS dataset for (and from) "
                "mapper: [%s]", invocation)

            dq = mr.models.kv.queues.dataset.DatasetQueue(
                workflow, invocation, mr.models.kv.queues.dataset.DT_ARGUMENTS)

            # Enumerate the 'p' member of every record.
            arguments = (d['p'] for d in dq.list_data())

            if mr.config.IS_DEBUG is True:
                arguments = list(arguments)
                _logger.debug("Sending arguments to mapper:\n%s",
                              pprint.pformat(arguments))

            wrapped_arguments = {
                'arguments': arguments,
            }

            construction_context = mr.handlers.general.HANDLER_CONTEXT_CLS(
                request=request, invocation=invocation)

            handler_result_gen = self.__call_handler(construction_context,
                                                     workflow,
                                                     step.map_handler_name,
                                                     wrapped_arguments)

            path_type = next(handler_result_gen)

            _logger.debug("Mapper [%s] path-type: [%s]", invocation,
                          path_type.__class__.__name__)

            assert issubclass(path_type.__class__,
                              mr.handlers.scope.MrConfigure) is True

            # Manage downstream steps that were mapped to (the handler was a
            # generator).

            if issubclass(path_type.__class__,
                          mr.handlers.scope.MrConfigureToMap) is True:

                self.__map_to_downstream(path_type.next_step_name,
                                         step.map_handler_name,
                                         handler_result_gen, workflow,
                                         invocation, message_parameters)
            elif issubclass(path_type.__class__,
                            mr.handlers.scope.MrConfigureToReturn) is True:

                self.__map_collect_result(step.map_handler_name,
                                          handler_result_gen, workflow,
                                          invocation, message_parameters)
        except Exception as e:
            _logger.exception(
                "Exception while processing MAP under request: "
                "%s", request)

            if issubclass(e.__class__, mr.handlers.general.HandlerException):
                # TODO(dustin): Finish debugging this.
                print("MAP ERROR STDOUT >>>>>>>>>>>>>")
                print(e.stdout)
                print("MAP ERROR STDERR >>>>>>>>>>>>>")
                print(e.stderr)
                print("MAP ERROR <<<<<<<<<<<<<<<<<<<<")

            invocation.error = traceback.format_exc()
            invocation.save()

            # Formally mark the request as failed but finished. In the event
            # that request-cleanup is disabled, forensics will be intact.

            request.failed_invocation_id = invocation.invocation_id
            request.is_done = True
            request.save()

            # Send notification.

            notify = mr.log.get_notify()
            notify.exception(
                "Mapper invocation [%s] under request [%s] "
                "failed. HANDLER=[%s]", invocation.invocation_id,
                request.request_id, step.map_handler_name)

            # Schedule the request for destruction.

            wm = mr.workflow_manager.get_wm()
            managed_workflow = wm.get(workflow.workflow_name)

            managed_workflow.cleanup_queue.add_request(request)

            raise
示例#6
0
    def handle_map(self, message_parameters):
        """Handle one dequeued map job."""

        request = message_parameters.request
        step = message_parameters.step
        invocation = message_parameters.invocation
        workflow = message_parameters.workflow

        _logger.debug("Processing MAP: [%s] [%s]", invocation, invocation.created_timestamp)

        try:
            ## Call the handler.

            _flow_logger.debug("  Reading ARGUMENTS dataset for (and from) " "mapper: [%s]", invocation)

            dq = mr.models.kv.queues.dataset.DatasetQueue(
                workflow, invocation, mr.models.kv.queues.dataset.DT_ARGUMENTS
            )

            # Enumerate the 'p' member of every record.
            arguments = (d["p"] for d in dq.list_data())

            if mr.config.IS_DEBUG is True:
                arguments = list(arguments)
                _logger.debug("Sending arguments to mapper:\n%s", pprint.pformat(arguments))

            wrapped_arguments = {"arguments": arguments}

            construction_context = mr.handlers.general.HANDLER_CONTEXT_CLS(request=request, invocation=invocation)

            handler_result_gen = self.__call_handler(
                construction_context, workflow, step.map_handler_name, wrapped_arguments
            )

            path_type = next(handler_result_gen)

            _logger.debug("Mapper [%s] path-type: [%s]", invocation, path_type.__class__.__name__)

            assert issubclass(path_type.__class__, mr.handlers.scope.MrConfigure) is True

            # Manage downstream steps that were mapped to (the handler was a
            # generator).

            if issubclass(path_type.__class__, mr.handlers.scope.MrConfigureToMap) is True:

                self.__map_to_downstream(
                    path_type.next_step_name,
                    step.map_handler_name,
                    handler_result_gen,
                    workflow,
                    invocation,
                    message_parameters,
                )
            elif issubclass(path_type.__class__, mr.handlers.scope.MrConfigureToReturn) is True:

                self.__map_collect_result(
                    step.map_handler_name, handler_result_gen, workflow, invocation, message_parameters
                )
        except Exception as e:
            _logger.exception("Exception while processing MAP under request: " "%s", request)

            if issubclass(e.__class__, mr.handlers.general.HandlerException):
                # TODO(dustin): Finish debugging this.
                print("MAP ERROR STDOUT >>>>>>>>>>>>>")
                print(e.stdout)
                print("MAP ERROR STDERR >>>>>>>>>>>>>")
                print(e.stderr)
                print("MAP ERROR <<<<<<<<<<<<<<<<<<<<")

            invocation.error = traceback.format_exc()
            invocation.save()

            # Formally mark the request as failed but finished. In the event
            # that request-cleanup is disabled, forensics will be intact.

            request.failed_invocation_id = invocation.invocation_id
            request.is_done = True
            request.save()

            # Send notification.

            notify = mr.log.get_notify()
            notify.exception(
                "Mapper invocation [%s] under request [%s] " "failed. HANDLER=[%s]",
                invocation.invocation_id,
                request.request_id,
                step.map_handler_name,
            )

            # Schedule the request for destruction.

            wm = mr.workflow_manager.get_wm()
            managed_workflow = wm.get(workflow.workflow_name)

            managed_workflow.cleanup_queue.add_request(request)

            raise
示例#7
0
    def handle_map(self, message_parameters):
        """Handle one dequeued map job."""

        request = message_parameters.request
        step = message_parameters.step
        invocation = message_parameters.invocation
        workflow = message_parameters.workflow
        
        _logger.debug("Processing MAP: [%s]", invocation)

        try:
            ## Call the handler.

            _flow_logger.debug("  Reading ARGUMENTS dataset for (and from) "
                               "mapper: [%s]", invocation)

            dq = mr.models.kv.queues.dataset.DatasetQueue(
                    workflow, 
                    invocation, 
                    mr.models.kv.queues.dataset.DT_ARGUMENTS)

            # Enumerate the 'p' member of every record.
            arguments = (d['p'] for d in dq.list_data())

            if mr.config.IS_DEBUG is True:
                arguments = list(arguments)
                _logger.debug("Sending arguments to mapper:\n%s", 
                              pprint.pformat(arguments))

            handler_ctx = self.__get_handler_context(workflow, invocation)

            wrapped_arguments = {
                'arguments': arguments,
                'ctx': handler_ctx,
            }

            handler_result_gen = self.__call_handler(
                                    workflow, 
                                    step.map_handler_name, 
                                    wrapped_arguments)

            path_type = next(handler_result_gen)

            _logger.debug("Mapper [%s] path-type: [%s]", 
                          invocation, path_type.__class__.__name__)

            assert issubclass(
                    path_type.__class__, 
                    mr.handlers.scope.MrConfigure) is True

            # Manage downstream steps that were mapped to (the handler was a 
            # generator).

            if issubclass(
                   path_type.__class__, 
                   mr.handlers.scope.MrConfigureToMap) is True:

                self.__map_to_downstream(
                    path_type.next_step_name,
                    step.map_handler_name, 
                    handler_result_gen,
                    workflow, 
                    invocation, 
                    message_parameters)
            elif issubclass(
                    path_type.__class__, 
                    mr.handlers.scope.MrConfigureToReturn) is True:

                self.__map_collect_result(
                    step.map_handler_name,
                    handler_result_gen,
                    workflow, 
                    invocation,
                    message_parameters)
        except:
            _logger.exception("Exception while processing MAP under request: "
                              "%s", request)

# TODO(dustin): We might have to remove the chain of invocations, on error.
            invocation.error = traceback.format_exc()
            invocation.save()

            request.failed_invocation_id = invocation.invocation_id
            request.done = True
            request.save()

            raise