示例#1
0
    def test_simulated_2d(self):


        # # Kind of neat - seeing how phase changes with coil sensitivity...
        # view(np.angle(coil_ims0))

        # Do GS solution to ESM then take SOS
        recon_gs = np.zeros(self.coil_ims0.shape,dtype='complex')
        for ii in range(self.num_coils):
            recon_gs[ii,...] = gs_recon(self.coil_ims0[ii,...],self.coil_ims1[ii,...],self.coil_ims2[ii,...],self.coil_ims3[ii,...])
        # view(np.angle(recon_gs)) # realize this is actually a movie - they all just look the same...
        recon_gs_sos = sos(recon_gs,axes=(0))
        view(recon_gs_sos)

        # Do PCA
        n_components = 4
        pca0 = coil_pca(self.coil_ims0,coil_dim=0,n_components=n_components)
        pca1 = coil_pca(self.coil_ims1,coil_dim=0,n_components=n_components)
        pca2 = coil_pca(self.coil_ims2,coil_dim=0,n_components=n_components)
        pca3,expl_var = coil_pca(self.coil_ims3,coil_dim=0,n_components=n_components,give_explained_var=True)
        # view(expl_var.real)

        # view(np.angle(pca3))

        # Do GS solution to ESM then take SOS, this time using PCA'd data
        recon_pca_gs = np.zeros(pca0.shape,dtype='complex')
        for ii in range(n_components):
            # view(np.concatenate((pca0[ii,...],pca1[ii,...],pca2[ii,...],pca3[ii,...])))
            recon_pca_gs[ii,...] = gs_recon(pca0[ii,...],pca1[ii,...],pca2[ii,...],pca3[ii,...])
        # view(np.angle(recon_pca_gs))
        recon_pca_gs_sos = sos(recon_pca_gs,axes=(0))
示例#2
0
def get_coil_combine_funs(N, v='-v0'):
    '''Return list of functions that perform coil combination.'''

    fft = lambda x0, ax=(1, 2): np.fft.fftshift(
        np.fft.fft2(np.fft.fftshift(x0, axes=ax), axes=ax), axes=ax)
    ifft = lambda x0, ax=(1, 2): np.fft.fftshift(
        np.fft.ifft2(np.fft.fftshift(x0, axes=ax), axes=ax), axes=ax)

    return (
        [
            # Walsh
            lambda x0: np.sum(walsh(x0)[0].conj() * x0, axis=0),

            # Inati
            lambda x0: inati(x0)[1],

            # PCA (imspace)
            lambda x0: coil_pca(x0, coil_dim=0, n_components=1),

            # PCA (kspace)
            lambda x0: ifft(coil_pca(
                fft(x0, ax=(1, 2)), coil_dim=0, n_components=1),
                            ax=(1, 2)),

            # Direct method
            lambda x0: np.sum(np.moveaxis(
                bart(1, 'caldir %d' % int(N / 2),
                     fft(np.moveaxis(x0, 0, -1)[:, :, None, :], ax=(0, 1))).
                squeeze(), -1, 0).conj() * x0,
                              axis=0),

            # Geometric
            lambda x0: ifft(bart(
                1, 'cc -p 1 -A -G',
                fft(np.moveaxis(x0, 0, -1)[:, :, None, :], ax=(0, 1))),
                            ax=(0, 1)).squeeze(),

            # # ESPIRiT -- using cc, don't use this one!
            # lambda x0: ifft(bart(1, 'cc -p 1 -A -E', fft(
            #     x0.T[:, :, None, :], ax=(0, 1))), ax=(0, 1)).squeeze()

            # ESPIRiT -- using ecalib, use this one!
            # use -v for numerical phantom
            lambda x0: np.sum(np.moveaxis(
                bart(1, 'ecalib -a -m1 -P -S %s' % v,
                     fft(np.moveaxis(x0, 0, -1)[:, :, None, :], ax=(0, 1))).
                squeeze(), -1, 0).conj() * x0,
                              axis=0),

            # SVD -- suprisingly good!
            lambda x0: ifft(bart(
                1, 'cc -p 1 -A -S',
                fft(np.moveaxis(x0, 0, -1)[:, :, None, :], ax=(0, 1))),
                            ax=(0, 1)).squeeze()
        ],
        [
            'Walsh', 'Inati', 'PCA (image space)', 'PCA (k-space)', 'Direct',
            'Geometric', 'ESPIRiT', 'SVD'
        ])
示例#3
0
    def test_simulated_2d_kspace(self):

        # Do PCA on kspace
        n_components = 4
        pca0 = coil_pca(self.kspace_coil_ims0,coil_dim=0,n_components=n_components)
        pca1 = coil_pca(self.kspace_coil_ims1,coil_dim=0,n_components=n_components)
        pca2 = coil_pca(self.kspace_coil_ims2,coil_dim=0,n_components=n_components)
        pca3,expl_var = coil_pca(self.kspace_coil_ims3,coil_dim=0,n_components=n_components,give_explained_var=True)
        # view(expl_var.imag)

        # Put it back in image space
        pca0 = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(pca0,axes=(1,2)),axes=(1,2)),axes=(1,2))
        pca1 = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(pca1,axes=(1,2)),axes=(1,2)),axes=(1,2))
        pca2 = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(pca2,axes=(1,2)),axes=(1,2)),axes=(1,2))
        pca3 = np.fft.ifftshift(np.fft.ifft2(np.fft.ifftshift(pca3,axes=(1,2)),axes=(1,2)),axes=(1,2))

        # Do GS solution to ESM then take SOS, this time using PCA'd data
        recon_pca_gs = np.zeros(pca0.shape,dtype='complex')
        for ii in range(n_components):
            # view(np.concatenate((pca0[ii,...],pca1[ii,...],pca2[ii,...],pca3[ii,...])))
            recon_pca_gs[ii,...] = gs_recon(pca0[ii,...],pca1[ii,...],pca2[ii,...],pca3[ii,...])
        # view(np.angle(recon_pca_gs))
        recon_pca_gs_sos = sos(recon_pca_gs,axes=(0))
示例#4
0
文件: view.py 项目: zongjg/mr_utils
def view(image,
         load_opts=None,
         is_raw=None,
         is_line=None,
         prep=None,
         fft=False,
         fft_axes=None,
         fftshift=None,
         avg_axis=None,
         coil_combine_axis=None,
         coil_combine_method='walsh',
         coil_combine_opts=None,
         is_imspace=False,
         mag=None,
         phase=False,
         log=False,
         imshow_opts={'cmap': 'gray'},
         montage_axis=None,
         montage_opts={'padding_width': 2},
         movie_axis=None,
         movie_interval=50,
         movie_repeat=True,
         save_npy=False,
         debug_level=logging.DEBUG,
         test_run=False):
    '''Image viewer to quickly inspect data.

    Parameters
    ----------
    image : str or array_like
        Name of the file including the file extension or numpy array.
    load_opts : dict, optional
        Options to pass to data loader.
    is_raw : bool, optional
        Inform if data is raw. Will attempt to guess from extension.
    is_line : bool, optional
        Whether or not this is a line plot (as opposed to image).
    prep : callable, optional
        Lambda function to process the data before it's displayed.
    fft : bool, optional
        Whether or not to perform n-dimensional FFT of data.
    fft_axes : tuple, optional
        Axis to perform FFT over, determines dimension of n-dim FFT.
    fftshift : bool, optional
        Whether or not to perform fftshift. Defaults to True if fft.
    avg_axis : int, optional
        Take average over given set of axes.
    coil_combine_axis : int, optional
        Which axis to perform coil combination over.
    coil_combine_method : {'walsh', 'inati', 'pca'}, optional
        Method to use to combine coils.
    coil_combine_opts : dict, optional
        Options to pass to the coil combine method.
    is_imspace : bool, optional
        Whether or not the data is in image space. For coil combine.
    mag : bool, optional
        View magnitude image. Defaults to True if data is complex.
    phase : bool, optional
        View phase image.
    log : bool, optional
        View log of magnitude data. Defaults to False.
    imshow_opts : dict, optional
        Options to pass to imshow. Defaults to { 'cmap'='gray' }.
    montage_axis : int, optional
        Which axis is the number of images to be shown.
    montage_opts : dict, optional
        Additional options to pass to the skimage.util.montage.
    movie_axis : int, optional
        Which axis is the number of frames of the movie.
    movie_interval : int, optional
        Interval to give to animation frames.
    movie_repeat : bool, optional
        Whether or not to put movie on endless loop.
    save_npy : bool, optional
        Whether or not to save the output as npy file.
    debug_level : logging_level, optional
        Level of verbosity. See logging module.
    test_run : bool, optional
        Doesn't show figure, returns debug object. Mostly for testing.

    Returns
    -------
    data : array_like
        Image data shown in plot.
    dict, optional
        All local variables when test_run=True.

    Raises
    ------
    Exception
        When file type is not in ['dat', 'npy', 'mat', 'h5'].
    ValueError
        When coil combine requested, but fft_axes not set.
    AssertionError
        When Walsh coil combine requested but len(fft_axes) =/= 2.
    ValueError
        When there are too many dimension to display.
    '''

    # Set up logging...
    logging.basicConfig(format='%(levelname)s: %(message)s', level=debug_level)

    # Add some default empty params
    if load_opts is None:
        load_opts = dict()
    if coil_combine_opts is None:
        coil_combine_opts = dict()

    # If the user wants to look at numpy matrix, recognize that
    # filename is the matrix:
    if isinstance(image, np.ndarray):
        logging.info('Image is a numpy array!')
        data = image
    elif isinstance(image, list):
        # If user sends a list, try casting to numpy array
        logging.info('Image is a list, trying to cast as numpy array...')
        data = np.array(image)
    else:
        # Find the file extension
        ext = pathlib.Path(image).suffix

        # If the user says data is raw, then trust the user
        if is_raw or (ext == '.dat'):
            data = load_raw(image, **load_opts)
        elif ext == '.npy':
            data = np.load(image, **load_opts)
        elif ext == '.mat':
            # Help out the user a little bit...  If only one
            # nontrivial key is found then go ahead and assume it's
            # that one
            data = None
            if not list(load_opts):
                keys = mat_keys(image, no_print=True)
                if len(keys) == 1:
                    logging.info(('No key supplied, but one key for'
                                  ' mat dictionary found (%s), using'
                                  ' it...'), keys[0])
                    data = load_mat(image, key=keys[0])

            # If we can't help the user out, just load it as normal
            if data is None:
                data = load_mat(image, **load_opts)
        elif ext == '.h5':
            data = load_ismrmrd(image, **load_opts)
        else:
            raise Exception('File type %s not understood!' % ext)

    # Right off the bat, remove singleton dimensions
    if 1 in data.shape:
        logging.info('Current shape %s: Removing singleton dimensions...',
                     str(data.shape))
        data = data.squeeze()
        logging.info('New shape: %s', str(data.shape))

    # Average out over any axis specified
    if avg_axis is not None:
        data = np.mean(data, axis=avg_axis)

    # Let's collapse the coil dimension using the specified algorithm
    if coil_combine_axis is not None:

        # We'll need to know the fft_axes if the data is in kspace
        if not is_imspace and fft_axes is None:
            msg = ('fft_axes required to do coil combination of '
                   'k-space data!')
            raise ValueError(msg)

        if coil_combine_method == 'walsh':
            msg = 'Walsh only works with 2D images!'
            assert len(fft_axes) == 2, msg
            logging.info('Performing Walsh 2d coil combine across axis %d...',
                         list(range(data.ndim))[coil_combine_axis])

            # We need to do this is image domain...
            if not is_imspace:
                fft_data = np.fft.ifftshift(np.fft.ifftn(data, axes=fft_axes),
                                            axes=fft_axes)
            else:
                fft_data = data

            # walsh expects (coil,y,x)
            fft_data = np.moveaxis(fft_data, coil_combine_axis, 0)
            csm_walsh, _ = calculate_csm_walsh(fft_data, **coil_combine_opts)
            fft_data = np.sum(csm_walsh * np.conj(fft_data),
                              axis=0,
                              keepdims=True)

            # Sum kept the axis where coil used to be so we can rely
            # on fft_axes to be correct when do the FT back to kspace
            fft_data = np.moveaxis(fft_data, 0, coil_combine_axis)

            # Now move back to kspace and squeeze the dangling axis
            if not is_imspace:
                data = np.fft.fftn(np.fft.fftshift(fft_data, axes=fft_axes),
                                   axes=fft_axes).squeeze()
            else:
                data = fft_data.squeeze()

        elif coil_combine_method == 'inati':

            logging.info('Performing Inati coil combine across axis %d...',
                         list(range(data.ndim))[coil_combine_axis])

            # Put things into image space if we need to
            if not is_imspace:
                fft_data = np.fft.ifftshift(np.fft.ifftn(data, axes=fft_axes),
                                            axes=fft_axes)
            else:
                fft_data = data

            # inati expects (coil,z,y,x)
            fft_data = np.moveaxis(fft_data, coil_combine_axis, 0)
            _, fft_data = calculate_csm_inati_iter(fft_data,
                                                   **coil_combine_opts)

            # calculate_csm_inati_iter got rid of the axis, so we
            # need to add it back in so we can use the same fft_axes
            fft_data = np.expand_dims(fft_data, coil_combine_axis)

            # Now move back to kspace and squeeze the dangling axis
            if not is_imspace:
                data = np.fft.fftn(np.fft.fftshift(fft_data, axes=fft_axes),
                                   axes=fft_axes).squeeze()
            else:
                data = fft_data.squeeze()

        elif coil_combine_method == 'pca':
            logging.info('Performing PCA coil combine across axis %d...',
                         list(range(data.ndim))[coil_combine_axis])

            # We don't actually care whether we do this is in kspace
            # or imspace
            if not is_imspace:
                logging.info(('PCA doesn\'t care that image might not be in'
                              'image space.'))

            if 'n_components' not in coil_combine_opts:
                n_components = int(data.shape[coil_combine_axis] / 2)
                logging.info('Deciding to use %d components.', n_components)
                coil_combine_opts['n_components'] = n_components

            data = coil_pca(data,
                            coil_dim=coil_combine_axis,
                            **coil_combine_opts)

        else:
            logging.error('Coil combination method "%s" not supported!',
                          coil_combine_method)
            logging.warning('Attempting to skip coil combination!')

    # Show the image.  Let's also try to help the user out again.  If
    # we have 3 dimensions, one of them is probably a montage or a
    # movie.  If the user didn't tell us anything, it's going to
    # crash anyway, so let's try guessing what's going on...
    if (data.ndim > 2) and (movie_axis is None) and (montage_axis is None):
        logging.info('Data has %d dimensions!', data.ndim)

        # We will always assume that inplane resolution is larger
        # than the movie/montage dimensions

        # If only 3 dims, then one must be montage/movie dimension
        if data.ndim == 3:
            # assume inplane resolution larger than movie/montage dim
            min_axis = np.argmin(data.shape)

            # Assume 10 is the most we'll want to montage
            if data.shape[min_axis] < 10:
                logging.info('Guessing axis %d is montage...', min_axis)
                montage_axis = min_axis
            else:
                logging.info('Guessing axis %d is movie...', min_axis)
                movie_axis = min_axis

        # If 4 dims, guess smaller dim will be montage, larger guess
        # movie
        elif data.ndim == 4:
            montage_axis = np.argmin(data.shape)

            # Consider the 4th dimension as the color channel in
            # skimontage
            montage_opts['multichannel'] = True

            # Montage will go through skimontage which will remove the
            # montage_axis dimension, so find the movie dimension
            #  without the montage dimension:
            tmp = np.delete(data.shape[:], montage_axis)
            movie_axis = np.argmin(tmp)

            logging.info(('Guessing axis %d is montage, axis %d will be '
                          'movie...'), montage_axis, movie_axis)

    # fft and fftshift will require fft_axes.  If the user didn't
    # give us axes, let's try to guess them:
    if (fft or (fftshift is not False)) and (fft_axes is None):
        all_axes = list(range(data.ndim))

        if (montage_axis is not None) and (movie_axis is not None):
            fft_axes = np.delete(
                all_axes, [all_axes[montage_axis], all_axes[movie_axis]])
        elif montage_axis is not None:
            fft_axes = np.delete(all_axes, all_axes[montage_axis])
        elif movie_axis is not None:
            fft_axes = np.delete(all_axes, all_axes[movie_axis])
        else:
            fft_axes = all_axes

        logging.info('User did not supply fft_axes, guessing %s...',
                     str(fft_axes))

    # Perform n-dim FFT across fft_axes if desired
    if fft:
        data = np.fft.fftn(data, axes=fft_axes)

    # Perform fftshift if desired.  If the user does not specify
    # fftshift, if fft is performed, then fftshift will also be
    # performed.  To override this behavior, simply supply
    # fftshift=False in the arguments.  Similarly, to force fftshift
    # even if no fft was performed, supply fftshift=True.
    if fft and (fftshift is None):
        fftshift = True
    elif fftshift is None:
        fftshift = False

    if fftshift:
        data = np.fft.fftshift(data, axes=fft_axes)

    # Take absolute value to view if necessary, must take abs before
    # log
    if np.iscomplexobj(data) or (mag is True) or (log is True):
        data = np.abs(data)

        if log:
            # Don't take log of 0!
            data[data == 0] = np.nan
            data = np.log(data)

    # If we asked for phase, let's work out how we'll do that
    if phase and ((mag is None) or (mag is True)):
        # TODO: figure out which axis to concatenate the phase onto
        data = np.concatenate((data, np.angle(data)), axis=fft_axes[-1])
    elif phase and (mag is False):
        data = np.angle(data)

    # Run any processing before imshow
    if callable(prep):
        data = prep(data)

    # If it's just a line plot, skip all the montage, movie stuff
    if is_line:
        montage_axis = None
        movie_axis = None

    if montage_axis is not None:
        # We can deal with 4 dimensions if we allow multichannel
        if data.ndim == 4 and 'multichannel' not in montage_opts:
            montage_opts['multichannel'] = True

            # When we move the movie_axis to the end, we will need to
            # adjust the montage axis in case we displace it.  We
            # need to move it to the end so skimontage will consider
            # it the multichannel
            data = np.moveaxis(data, movie_axis, -1)
            if movie_axis < montage_axis:
                montage_axis -= 1

        # Put the montage axis in front
        data = np.moveaxis(data, montage_axis, 0)
        try:
            data = skimontage(data, **montage_opts)
        except ValueError:
            # Multichannel might be erronously set
            montage_opts['multichannel'] = False
            data = skimontage(data, **montage_opts)

        if data.ndim == 3:
            # If we had 4 dimensions, we just lost one, so now we
            # need to know where the movie dimension went off to...
            if movie_axis > montage_axis:
                movie_axis -= 1
            # Move the movie axis back, it's no longer the color
            # channel
            data = np.moveaxis(data, -1, movie_axis)

    if movie_axis is not None:
        fig = plt.figure()
        data = np.moveaxis(data, movie_axis, -1)
        im = plt.imshow(data[..., 0], **imshow_opts)

        def updatefig(frame):
            '''Animation function for figure.'''
            im.set_array(data[..., frame])
            return im,  # pylint: disable=R1707

        _ani = animation.FuncAnimation(fig,
                                       updatefig,
                                       frames=data.shape[-1],
                                       interval=movie_interval,
                                       blit=True,
                                       repeat=movie_repeat)

        if not test_run:
            plt.show()
    else:
        if data.ndim == 1 or is_line:
            plt.plot(data)
        elif data.ndim == 2:
            # Just a regular old 2d image...
            plt.imshow(np.nan_to_num(data), **imshow_opts)
        else:
            raise ValueError('%d is too many dimensions!' % data.ndim)

        if not test_run:
            plt.show()

    # Save what we looked at if desired
    if save_npy:
        if ext:
            filename = image
        else:
            filename = 'view-output'
        np.save(filename, data)

    # If we're testing, return all the local vars
    if test_run:
        return locals()
    return data
示例#5
0
                                                   axes=(1, 2)),
                                       axes=(1, 2))

    view(np.angle(coil_ims0))

    # Do GS solution to ESM then take SOS
    recon_gs = np.zeros(coil_ims0.shape, dtype='complex')
    for ii in range(num_coils):
        recon_gs[ii, ...] = gs_recon(coil_ims0[ii, ...], coil_ims1[ii, ...],
                                     coil_ims2[ii, ...], coil_ims3[ii, ...])
    recon_gs_sos = sos(recon_gs, axes=(0))
    view(recon_gs_sos)

    # Do PCA
    n_components = 4
    pca0 = coil_pca(coil_ims0, coil_dim=0, n_components=n_components)
    pca1 = coil_pca(coil_ims1, coil_dim=0, n_components=n_components)
    pca2 = coil_pca(coil_ims2, coil_dim=0, n_components=n_components)
    pca3, expl_var = coil_pca(coil_ims3,
                              coil_dim=0,
                              n_components=n_components,
                              give_explained_var=True)
    view(expl_var.real)
    view(np.angle(pca3))

    # Do GS solution to ESM then take SOS, this time using PCA'd data
    recon_pca_gs = np.zeros(pca0.shape, dtype='complex')
    for ii in range(n_components):
        recon_pca_gs[ii, ...] = gs_recon(pca0[ii, ...], pca1[ii, ...],
                                         pca2[ii, ...], pca3[ii, ...])
    view(np.angle(recon_pca_gs))