config = InferenceConfig()

    config.display()
    #####

    result_path = DEFAULT_IMAGE_DIR + '/result'
    cropped_path = DEFAULT_IMAGE_DIR + '/cropped'

    if not os.path.isdir(result_path):
        os.mkdir(DEFAULT_IMAGE_DIR + '/result')
        os.mkdir(DEFAULT_IMAGE_DIR + '/cropped')

################# LOAD MODELS #######################
#### MASK-R-CNN
    mrcnn_model = modellib.MaskRCNN(mode="inference",
                                    config=config,
                                    model_dir=DEFAULT_LOGS_DIR)
    weights_path = DEFAULT_MRCNN_MODEL_DIR
    mrcnn_model.load_weights(weights_path, by_name=True)

    ##### EFFICIENTNET

    efficient_net = EfficientNetB0(weights='imagenet',
                                   input_shape=(32, 32, 3),
                                   include_top=False,
                                   pooling='max')

    eff_model = Sequential()
    eff_model.add(efficient_net)
    eff_model.add(Dense(units=120, activation='relu'))
    eff_model.add(Dense(units=120, activation='relu'))
示例#2
0
    brush_result_path = DEFAULT_IMAGE_DIR + '/result_brush'
    crack_result_path = DEFAULT_IMAGE_DIR + '/result_crack'
    cropped_path = DEFAULT_IMAGE_DIR + '/cropped'

    if not os.path.isdir(brush_result_path):
        os.mkdir(DEFAULT_IMAGE_DIR + '/result_brush')

    if not os.path.isdir(crack_result_path):
        os.mkdir(DEFAULT_IMAGE_DIR + '/result_crack')

    if not os.path.isdir(cropped_path):
        os.mkdir(DEFAULT_IMAGE_DIR + '/cropped')

    brush_model = modellib.MaskRCNN(mode="inference",
                                    config=brush_config,
                                    model_dir=DEFAULT_LOGS_DIR)
    brush_weights_path = DEFAULT_BRUSH_DIR

    #### MASK-R-CNN brush
    with tf.device('/gpu:0'):
        brush_model.load_weights(brush_weights_path, by_name=True)

    crack_model = modellib.MaskRCNN(mode="inference",
                                    config=crack_config,
                                    model_dir=DEFAULT_LOGS_DIR)
    crack_weights_path = DEFAULT_CRACK_DIR

    #### MASK-R-CNN crack
    with tf.device('/gpu:1'):
        crack_model.load_weights(crack_weights_path, by_name=True)