示例#1
0
def test_load_with_long_qid():
    # load svmfile with longint qid attribute
    data = b"""
    1 qid:0 0:1 1:2 2:3
    0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985
    0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985
    3 qid:9223372036854775807  0:1440446648 1:72048431380967004 2:236784985"""
    X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)

    true_X = [[1, 2, 3], [1440446648, 72048431380967004, 236784985],
              [1440446648, 72048431380967004, 236784985],
              [1440446648, 72048431380967004, 236784985]]

    true_y = [1, 0, 0, 3]
    trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807]
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=qid, zero_based=True)
    f.seek(0)
    X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f.seek(0)
    X, y = load_svmlight_file(f, query_id=False, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
示例#2
0
def test_load_zeros():
    f = BytesIO()
    true_X = sp.csr_matrix(np.zeros(shape=(3, 4)))
    true_y = np.array([0, 1, 0])
    dump_svmlight_file(true_X, true_y, f)

    for zero_based in ['auto', True, False]:
        f.seek(0)
        X, y = load_svmlight_file(f, n_features=4, zero_based=zero_based)
        assert_array_almost_equal(y, true_y)
        assert_array_almost_equal(X.toarray(), true_X.toarray())
示例#3
0
def test_dump_invalid():
    X, y = load_svmlight_file(datafile)

    f = BytesIO()
    y2d = [y]
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y2d, f)

    f = BytesIO()
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y[:-1], f)
示例#4
0
def test_dump_multilabel():
    X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]]
    y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]]
    y_sparse = sp.csr_matrix(y_dense)
    for y in [y_dense, y_sparse]:
        f = BytesIO()
        dump_svmlight_file(X, y, f, multilabel=True)
        f.seek(0)
        # make sure it dumps multilabel correctly
        assert f.readline() == b"1 0:1 2:3 4:5\n"
        assert f.readline() == b"0,2 \n"
        assert f.readline() == b"0,1 1:5 3:1\n"
示例#5
0
def test_dump_query_id():
    # test dumping a file with query_id
    X, y = load_svmlight_file(datafile)
    X = X.toarray()
    query_id = np.arange(X.shape[0]) // 2
    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True)

    f.seek(0)
    X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_almost_equal(X, X1.toarray())
    assert_array_almost_equal(y, y1)
    assert_array_almost_equal(query_id, query_id1)
示例#6
0
def test_dump_comment():
    X, y = load_svmlight_file(datafile)
    X = X.toarray()

    f = BytesIO()
    ascii_comment = "This is a comment\nspanning multiple lines."
    dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)

    # XXX we have to update this to support Python 3.x
    utf8_comment = b"It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc"
    f = BytesIO()
    with pytest.raises(UnicodeDecodeError):
        dump_svmlight_file(X, y, f, comment=utf8_comment)

    unicode_comment = utf8_comment.decode("utf-8")
    f = BytesIO()
    dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)

    f = BytesIO()
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y, f, comment="I've got a \0.")
示例#7
0
def test_load_offset_exhaustive_splits():
    rng = np.random.RandomState(0)
    X = np.array([
        [0, 0, 0, 0, 0, 0],
        [1, 2, 3, 4, 0, 6],
        [1, 2, 3, 4, 0, 6],
        [0, 0, 0, 0, 0, 0],
        [1, 0, 3, 0, 0, 0],
        [0, 0, 0, 0, 0, 1],
        [1, 0, 0, 0, 0, 0],
    ])
    X = sp.csr_matrix(X)
    n_samples, n_features = X.shape
    y = rng.randint(low=0, high=2, size=n_samples)
    query_id = np.arange(n_samples) // 2

    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=query_id)
    f.seek(0)

    size = len(f.getvalue())

    # load the same data in 2 parts with all the possible byte offsets to
    # locate the split so has to test for particular boundary cases
    for mark in range(size):
        f.seek(0)
        X_0, y_0, q_0 = load_svmlight_file(f,
                                           n_features=n_features,
                                           query_id=True,
                                           offset=0,
                                           length=mark)
        X_1, y_1, q_1 = load_svmlight_file(f,
                                           n_features=n_features,
                                           query_id=True,
                                           offset=mark,
                                           length=-1)
        q_concat = np.concatenate([q_0, q_1])
        y_concat = np.concatenate([y_0, y_1])
        X_concat = sp.vstack([X_0, X_1])
        assert_array_almost_equal(y, y_concat)
        assert_array_equal(query_id, q_concat)
        assert_array_almost_equal(X.toarray(), X_concat.toarray())
示例#8
0
def test_load_with_offsets(sparsity, n_samples, n_features):
    rng = np.random.RandomState(0)
    X = rng.uniform(low=0.0, high=1.0, size=(n_samples, n_features))
    if sparsity:
        X[X < sparsity] = 0.0
    X = sp.csr_matrix(X)
    y = rng.randint(low=0, high=2, size=n_samples)

    f = BytesIO()
    dump_svmlight_file(X, y, f)
    f.seek(0)

    size = len(f.getvalue())

    # put some marks that are likely to happen anywhere in a row
    mark_0 = 0
    mark_1 = size // 3
    length_0 = mark_1 - mark_0
    mark_2 = 4 * size // 5
    length_1 = mark_2 - mark_1

    # load the original sparse matrix into 3 independent CSR matrices
    X_0, y_0 = load_svmlight_file(f,
                                  n_features=n_features,
                                  offset=mark_0,
                                  length=length_0)
    X_1, y_1 = load_svmlight_file(f,
                                  n_features=n_features,
                                  offset=mark_1,
                                  length=length_1)
    X_2, y_2 = load_svmlight_file(f, n_features=n_features, offset=mark_2)

    y_concat = np.concatenate([y_0, y_1, y_2])
    X_concat = sp.vstack([X_0, X_1, X_2])
    assert_array_almost_equal(y, y_concat)
    assert_array_almost_equal(X.toarray(), X_concat.toarray())
示例#9
0
def test_dump_concise():
    one = 1
    two = 2.1
    three = 3.01
    exact = 1.000000000000001
    # loses the last decimal place
    almost = 1.0000000000000001
    X = [[one, two, three, exact, almost], [1e9, 2e18, 3e27, 0, 0],
         [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
    y = [one, two, three, exact, almost]
    f = BytesIO()
    dump_svmlight_file(X, y, f)
    f.seek(0)
    # make sure it's using the most concise format possible
    assert (f.readline() == b"1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n")
    assert f.readline() == b"2.1 0:1000000000 1:2e+18 2:3e+27\n"
    assert f.readline() == b"3.01 \n"
    assert f.readline() == b"1.000000000000001 \n"
    assert f.readline() == b"1 \n"
    f.seek(0)
    # make sure it's correct too :)
    X2, y2 = load_svmlight_file(f)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)
示例#10
0
def test_dump():
    X_sparse, y_dense = load_svmlight_file(datafile)
    X_dense = X_sparse.toarray()
    y_sparse = sp.csr_matrix(y_dense)

    # slicing a csr_matrix can unsort its .indices, so test that we sort
    # those correctly
    X_sliced = X_sparse[np.arange(X_sparse.shape[0])]
    y_sliced = y_sparse[np.arange(y_sparse.shape[0])]

    for X in (X_sparse, X_dense, X_sliced):
        for y in (y_sparse, y_dense, y_sliced):
            for zero_based in (True, False):
                for dtype in [np.float32, np.float64, np.int32, np.int64]:
                    f = BytesIO()
                    # we need to pass a comment to get the version info in;
                    # LibSVM doesn't grok comments so they're not put in by
                    # default anymore.

                    if (sp.issparse(y) and y.shape[0] == 1):
                        # make sure y's shape is: (n_samples, n_labels)
                        # when it is sparse
                        y = y.T

                    # Note: with dtype=np.int32 we are performing unsafe casts,
                    # where X.astype(dtype) overflows. The result is
                    # then platform dependent and X_dense.astype(dtype) may be
                    # different from X_sparse.astype(dtype).asarray().
                    X_input = X.astype(dtype)

                    dump_svmlight_file(X_input,
                                       y,
                                       f,
                                       comment="test",
                                       zero_based=zero_based)
                    f.seek(0)

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert "scikit-learn %s" % mrex.__version__ in comment

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert ["one", "zero"][zero_based] + "-based" in comment

                    X2, y2 = load_svmlight_file(f,
                                                dtype=dtype,
                                                zero_based=zero_based)
                    assert X2.dtype == dtype
                    assert_array_equal(X2.sorted_indices().indices, X2.indices)

                    X2_dense = X2.toarray()
                    if sp.issparse(X_input):
                        X_input_dense = X_input.toarray()
                    else:
                        X_input_dense = X_input

                    if dtype == np.float32:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(X_input_dense, X2_dense, 4)
                        assert_array_almost_equal(
                            y_dense.astype(dtype, copy=False), y2, 4)
                    else:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(X_input_dense, X2_dense, 15)
                        assert_array_almost_equal(
                            y_dense.astype(dtype, copy=False), y2, 15)
示例#11
0
 def dump_svmlight_file(self, file):
     data = np.array(self.data)
     X = data[:, 0:2]
     y = data[:, 2]
     dump_svmlight_file(X, y, file)