def test_grid_to_graph(): # Checking that the function works with graphs containing no edges size = 2 roi_size = 1 # Generating two convex parts with one vertex # Thus, edges will be empty in _to_graph mask = np.zeros((size, size), dtype=np.bool) mask[0:roi_size, 0:roi_size] = True mask[-roi_size:, -roi_size:] = True mask = mask.reshape(size ** 2) A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) assert connected_components(A)[0] == 2 # Checking that the function works whatever the type of mask is mask = np.ones((size, size), dtype=np.int16) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask) assert connected_components(A)[0] == 1 # Checking dtype of the graph mask = np.ones((size, size)) A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.bool) assert A.dtype == np.bool A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.int) assert A.dtype == np.int A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float64) assert A.dtype == np.float64
def test_agglomerative_clustering_with_distance_threshold(linkage): # Check that we obtain the correct number of clusters with # agglomerative clustering with distance_threshold. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) # test when distance threshold is set to 10 distance_threshold = 10 for conn in [None, connectivity]: clustering = AgglomerativeClustering( n_clusters=None, distance_threshold=distance_threshold, connectivity=conn, linkage=linkage) clustering.fit(X) clusters_produced = clustering.labels_ num_clusters_produced = len(np.unique(clustering.labels_)) # test if the clusters produced match the point in the linkage tree # where the distance exceeds the threshold tree_builder = _TREE_BUILDERS[linkage] children, n_components, n_leaves, parent, distances = \ tree_builder(X, connectivity=conn, n_clusters=None, return_distance=True) num_clusters_at_threshold = np.count_nonzero( distances >= distance_threshold) + 1 # test number of clusters produced assert num_clusters_at_threshold == num_clusters_produced # test clusters produced clusters_at_threshold = _hc_cut(n_clusters=num_clusters_produced, children=children, n_leaves=n_leaves) assert np.array_equiv(clusters_produced, clusters_at_threshold)
def test_affinity_passed_to_fix_connectivity(): # Test that the affinity parameter is actually passed to the pairwise # function size = 2 rng = np.random.RandomState(0) X = rng.randn(size, size) mask = np.array([True, False, False, True]) connectivity = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray) class FakeAffinity: def __init__(self): self.counter = 0 def increment(self, *args, **kwargs): self.counter += 1 return self.counter fa = FakeAffinity() linkage_tree(X, connectivity=connectivity, affinity=fa.increment) assert fa.counter == 3
def test_connect_regions_with_grid(): try: face = sp.face(gray=True) except AttributeError: # Newer versions of scipy have face in misc from scipy import misc face = misc.face(gray=True) # subsample by 4 to reduce run time face = face[::4, ::4] mask = face > 50 graph = grid_to_graph(*face.shape, mask=mask) assert ndimage.label(mask)[1] == connected_components(graph)[0] mask = face > 150 graph = grid_to_graph(*face.shape, mask=mask, dtype=None) assert ndimage.label(mask)[1] == connected_components(graph)[0]
def test_connectivity_fixing_non_lil(): # Check non regression of a bug if a non item assignable connectivity is # provided with more than one component. # create dummy data x = np.array([[0, 0], [1, 1]]) # create a mask with several components to force connectivity fixing m = np.array([[True, False], [False, True]]) c = grid_to_graph(n_x=2, n_y=2, mask=m) w = AgglomerativeClustering(connectivity=c, linkage='ward') assert_warns(UserWarning, w.fit, x)
def test_height_linkage_tree(): # Check that the height of the results of linkage tree is sorted. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for linkage_func in _TREE_BUILDERS.values(): children, n_nodes, n_leaves, parent = linkage_func(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert len(children) + n_leaves == n_nodes
def test_ward_agglomeration(): # Check that we obtain the correct solution in a simplistic case rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) agglo = FeatureAgglomeration(n_clusters=5, connectivity=connectivity) agglo.fit(X) assert np.size(np.unique(agglo.labels_)) == 5 X_red = agglo.transform(X) assert X_red.shape[1] == 5 X_full = agglo.inverse_transform(X_red) assert np.unique(X_full[0]).size == 5 assert_array_almost_equal(agglo.transform(X_full), X_red) # Check that fitting with no samples raises a ValueError with pytest.raises(ValueError): agglo.fit(X[:0])
def test_structured_linkage_tree(): # Check that we obtain the correct solution for structured linkage trees. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) # Avoiding a mask with only 'True' entries mask[4:7, 4:7] = 0 X = rng.randn(50, 100) connectivity = grid_to_graph(*mask.shape) for tree_builder in _TREE_BUILDERS.values(): children, n_components, n_leaves, parent = \ tree_builder(X.T, connectivity) n_nodes = 2 * X.shape[1] - 1 assert len(children) + n_leaves == n_nodes # Check that ward_tree raises a ValueError with a connectivity matrix # of the wrong shape with pytest.raises(ValueError): tree_builder(X.T, np.ones((4, 4))) # Check that fitting with no samples raises an error with pytest.raises(ValueError): tree_builder(X.T[:0], connectivity)
def test_agglomerative_clustering(): # Check that we obtain the correct number of clusters with # agglomerative clustering. rng = np.random.RandomState(0) mask = np.ones([10, 10], dtype=np.bool) n_samples = 100 X = rng.randn(n_samples, 50) connectivity = grid_to_graph(*mask.shape) for linkage in ("ward", "complete", "average", "single"): clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) clustering.fit(X) # test caching try: tempdir = mkdtemp() clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, memory=tempdir, linkage=linkage) clustering.fit(X) labels = clustering.labels_ assert np.size(np.unique(labels)) == 10 finally: shutil.rmtree(tempdir) # Turn caching off now clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage=linkage) # Check that we obtain the same solution with early-stopping of the # tree building clustering.compute_full_tree = False clustering.fit(X) assert_almost_equal( normalized_mutual_info_score(clustering.labels_, labels), 1) clustering.connectivity = None clustering.fit(X) assert np.size(np.unique(clustering.labels_)) == 10 # Check that we raise a TypeError on dense matrices clustering = AgglomerativeClustering( n_clusters=10, connectivity=sparse.lil_matrix(connectivity.toarray()[:10, :10]), linkage=linkage) with pytest.raises(ValueError): clustering.fit(X) # Test that using ward with another metric than euclidean raises an # exception clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity.toarray(), affinity="manhattan", linkage="ward") with pytest.raises(ValueError): clustering.fit(X) # Test using another metric than euclidean works with linkage complete for affinity in PAIRED_DISTANCES.keys(): # Compare our (structured) implementation to scipy clustering = AgglomerativeClustering(n_clusters=10, connectivity=np.ones( (n_samples, n_samples)), affinity=affinity, linkage="complete") clustering.fit(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=None, affinity=affinity, linkage="complete") clustering2.fit(X) assert_almost_equal( normalized_mutual_info_score(clustering2.labels_, clustering.labels_), 1) # Test that using a distance matrix (affinity = 'precomputed') has same # results (with connectivity constraints) clustering = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, linkage="complete") clustering.fit(X) X_dist = pairwise_distances(X) clustering2 = AgglomerativeClustering(n_clusters=10, connectivity=connectivity, affinity='precomputed', linkage="complete") clustering2.fit(X_dist) assert_array_equal(clustering.labels_, clustering2.labels_)
print(__doc__) # Code source: Gaël Varoquaux # Modified for documentation by Jaques Grobler # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from mrex import datasets, cluster from mrex.feature_extraction.image import grid_to_graph digits = datasets.load_digits() images = digits.images X = np.reshape(images, (len(images), -1)) connectivity = grid_to_graph(*images[0].shape) agglo = cluster.FeatureAgglomeration(connectivity=connectivity, n_clusters=32) agglo.fit(X) X_reduced = agglo.transform(X) X_restored = agglo.inverse_transform(X_reduced) images_restored = np.reshape(X_restored, images.shape) plt.figure(1, figsize=(4, 3.5)) plt.clf() plt.subplots_adjust(left=.01, right=.99, bottom=.01, top=.91) for i in range(4): plt.subplot(3, 4, i + 1) plt.imshow(images[i], cmap=plt.cm.gray, vmax=16, interpolation='nearest') plt.xticks(())
X /= X.std(axis=0) y = np.dot(X, coef.ravel()) noise = np.random.randn(y.shape[0]) noise_coef = (linalg.norm(y, 2) / np.exp(snr / 20.)) / linalg.norm(noise, 2) y += noise_coef * noise # add noise # ############################################################################# # Compute the coefs of a Bayesian Ridge with GridSearch cv = KFold(2) # cross-validation generator for model selection ridge = BayesianRidge() cachedir = tempfile.mkdtemp() mem = Memory(location=cachedir, verbose=1) # Ward agglomeration followed by BayesianRidge connectivity = grid_to_graph(n_x=size, n_y=size) ward = FeatureAgglomeration(n_clusters=10, connectivity=connectivity, memory=mem) clf = Pipeline([('ward', ward), ('ridge', ridge)]) # Select the optimal number of parcels with grid search clf = GridSearchCV(clf, {'ward__n_clusters': [10, 20, 30]}, n_jobs=1, cv=cv) clf.fit(X, y) # set the best parameters coef_ = clf.best_estimator_.steps[-1][1].coef_ coef_ = clf.best_estimator_.steps[0][1].inverse_transform(coef_) coef_agglomeration_ = coef_.reshape(size, size) # Anova univariate feature selection followed by BayesianRidge f_regression = mem.cache(feature_selection.f_regression) # caching function anova = feature_selection.SelectPercentile(f_regression) clf = Pipeline([('anova', anova), ('ridge', ridge)])