示例#1
0
def test_number_of_subsets_of_features():
    # In RFE, 'number_of_subsets_of_features'
    # = the number of iterations in '_fit'
    # = max(ranking_)
    # = 1 + (n_features + step - n_features_to_select - 1) // step
    # After optimization #4534, this number
    # = 1 + np.ceil((n_features - n_features_to_select) / float(step))
    # This test case is to test their equivalence, refer to #4534 and #3824

    def formula1(n_features, n_features_to_select, step):
        return 1 + ((n_features + step - n_features_to_select - 1) // step)

    def formula2(n_features, n_features_to_select, step):
        return 1 + np.ceil((n_features - n_features_to_select) / float(step))

    # RFE
    # Case 1, n_features - n_features_to_select is divisible by step
    # Case 2, n_features - n_features_to_select is not divisible by step
    n_features_list = [11, 11]
    n_features_to_select_list = [3, 3]
    step_list = [2, 3]
    for n_features, n_features_to_select, step in zip(
            n_features_list, n_features_to_select_list, step_list):
        generator = check_random_state(43)
        X = generator.normal(size=(100, n_features))
        y = generator.rand(100).round()
        rfe = RFE(estimator=SVC(kernel="linear"),
                  n_features_to_select=n_features_to_select,
                  step=step)
        rfe.fit(X, y)
        # this number also equals to the maximum of ranking_
        assert (np.max(rfe.ranking_) == formula1(n_features,
                                                 n_features_to_select, step))
        assert (np.max(rfe.ranking_) == formula2(n_features,
                                                 n_features_to_select, step))

    # In RFECV, 'fit' calls 'RFE._fit'
    # 'number_of_subsets_of_features' of RFE
    # = the size of 'grid_scores' of RFECV
    # = the number of iterations of the for loop before optimization #4534

    # RFECV, n_features_to_select = 1
    # Case 1, n_features - 1 is divisible by step
    # Case 2, n_features - 1 is not divisible by step

    n_features_to_select = 1
    n_features_list = [11, 10]
    step_list = [2, 2]
    for n_features, step in zip(n_features_list, step_list):
        generator = check_random_state(43)
        X = generator.normal(size=(100, n_features))
        y = generator.rand(100).round()
        rfecv = RFECV(estimator=SVC(kernel="linear"), step=step)
        rfecv.fit(X, y)

        assert (rfecv.grid_scores_.shape[0] == formula1(
            n_features, n_features_to_select, step))
        assert (rfecv.grid_scores_.shape[0] == formula2(
            n_features, n_features_to_select, step))
示例#2
0
def test_make_rng():
    # Check the check_random_state utility function behavior
    assert check_random_state(None) is np.random.mtrand._rand
    assert check_random_state(np.random) is np.random.mtrand._rand

    rng_42 = np.random.RandomState(42)
    assert check_random_state(42).randint(100) == rng_42.randint(100)

    rng_42 = np.random.RandomState(42)
    assert check_random_state(rng_42) is rng_42

    rng_42 = np.random.RandomState(42)
    assert check_random_state(43).randint(100) != rng_42.randint(100)

    assert_raises(ValueError, check_random_state, "some invalid seed")
示例#3
0
def test_kd_tree_query(metric, k, dualtree, breadth_first):
    rng = check_random_state(0)
    X = rng.random_sample((40, DIMENSION))
    Y = rng.random_sample((10, DIMENSION))

    kwargs = METRICS[metric]
    check_neighbors(dualtree, breadth_first, k, metric, X, Y, kwargs)
示例#4
0
def test_lda_dimension_warning(n_classes, n_features):
    # FIXME: Future warning to be removed in 0.23
    rng = check_random_state(0)
    n_samples = 10
    X = rng.randn(n_samples, n_features)
    # we create n_classes labels by repeating and truncating a
    # range(n_classes) until n_samples
    y = np.tile(range(n_classes), n_samples // n_classes + 1)[:n_samples]
    max_components = min(n_features, n_classes - 1)

    for n_components in [max_components - 1, None, max_components]:
        # if n_components <= min(n_classes - 1, n_features), no warning
        lda = LinearDiscriminantAnalysis(n_components=n_components)
        assert_no_warnings(lda.fit, X, y)

    for n_components in [
            max_components + 1,
            max(n_features, n_classes - 1) + 1
    ]:
        # if n_components > min(n_classes - 1, n_features), raise warning
        # We test one unit higher than max_components, and then something
        # larger than both n_features and n_classes - 1 to ensure the test
        # works for any value of n_component
        lda = LinearDiscriminantAnalysis(n_components=n_components)
        msg = ("n_components cannot be larger than min(n_features, "
               "n_classes - 1). Using min(n_features, "
               "n_classes - 1) = min(%d, %d - 1) = %d components." %
               (n_features, n_classes, max_components))
        assert_warns_message(ChangedBehaviorWarning, msg, lda.fit, X, y)
        future_msg = ("In version 0.23, setting n_components > min("
                      "n_features, n_classes - 1) will raise a "
                      "ValueError. You should set n_components to None"
                      " (default), or a value smaller or equal to "
                      "min(n_features, n_classes - 1).")
        assert_warns_message(FutureWarning, future_msg, lda.fit, X, y)
示例#5
0
def test_multinomial_loss():
    # test if the multinomial loss and gradient computations are consistent
    X, y = iris.data, iris.target.astype(np.float64)
    n_samples, n_features = X.shape
    n_classes = len(np.unique(y))

    rng = check_random_state(42)
    weights = rng.randn(n_features, n_classes)
    intercept = rng.randn(n_classes)
    sample_weights = rng.randn(n_samples)
    np.abs(sample_weights, sample_weights)

    # compute loss and gradient like in multinomial SAG
    dataset, _ = make_dataset(X, y, sample_weights, random_state=42)
    loss_1, grad_1 = _multinomial_grad_loss_all_samples(
        dataset, weights, intercept, n_samples, n_features, n_classes)
    # compute loss and gradient like in multinomial LogisticRegression
    lbin = LabelBinarizer()
    Y_bin = lbin.fit_transform(y)
    weights_intercept = np.vstack((weights, intercept)).T.ravel()
    loss_2, grad_2, _ = _multinomial_loss_grad(weights_intercept, X, Y_bin,
                                               0.0, sample_weights)
    grad_2 = grad_2.reshape(n_classes, -1)
    grad_2 = grad_2[:, :-1].T

    # comparison
    assert_array_almost_equal(grad_1, grad_2)
    assert_almost_equal(loss_1, loss_2)
示例#6
0
def test_iforest_sparse():
    """Check IForest for various parameter settings on sparse input."""
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "bootstrap": [True, False]})

    for sparse_format in [csc_matrix, csr_matrix]:
        X_train_sparse = sparse_format(X_train)
        X_test_sparse = sparse_format(X_test)

        for params in grid:
            # Trained on sparse format
            sparse_classifier = IsolationForest(
                n_estimators=10, random_state=1, **params).fit(X_train_sparse)
            sparse_results = sparse_classifier.predict(X_test_sparse)

            # Trained on dense format
            dense_classifier = IsolationForest(
                n_estimators=10, random_state=1, **params).fit(X_train)
            dense_results = dense_classifier.predict(X_test)

            assert_array_equal(sparse_results, dense_results)
示例#7
0
def test_oneclass_decision_function():
    # Test OneClassSVM decision function
    clf = svm.OneClassSVM()
    rnd = check_random_state(2)

    # Generate train data
    X = 0.3 * rnd.randn(100, 2)
    X_train = np.r_[X + 2, X - 2]

    # Generate some regular novel observations
    X = 0.3 * rnd.randn(20, 2)
    X_test = np.r_[X + 2, X - 2]
    # Generate some abnormal novel observations
    X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2))

    # fit the model
    clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1)
    clf.fit(X_train)

    # predict things
    y_pred_test = clf.predict(X_test)
    assert np.mean(y_pred_test == 1) > .9
    y_pred_outliers = clf.predict(X_outliers)
    assert np.mean(y_pred_outliers == -1) > .9
    dec_func_test = clf.decision_function(X_test)
    assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1)
    dec_func_outliers = clf.decision_function(X_outliers)
    assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1)
示例#8
0
def test_rfe():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    X_sparse = sparse.csr_matrix(X)
    y = iris.target

    # dense model
    clf = SVC(kernel="linear")
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    X_r = rfe.transform(X)
    clf.fit(X_r, y)
    assert len(rfe.ranking_) == X.shape[1]

    # sparse model
    clf_sparse = SVC(kernel="linear")
    rfe_sparse = RFE(estimator=clf_sparse, n_features_to_select=4, step=0.1)
    rfe_sparse.fit(X_sparse, y)
    X_r_sparse = rfe_sparse.transform(X_sparse)

    assert X_r.shape == iris.data.shape
    assert_array_almost_equal(X_r[:10], iris.data[:10])

    assert_array_almost_equal(rfe.predict(X), clf.predict(iris.data))
    assert rfe.score(X, y) == clf.score(iris.data, iris.target)
    assert_array_almost_equal(X_r, X_r_sparse.toarray())
示例#9
0
def test_compute_mi_cc():
    # For two continuous variables a good approach is to test on bivariate
    # normal distribution, where mutual information is known.

    # Mean of the distribution, irrelevant for mutual information.
    mean = np.zeros(2)

    # Setup covariance matrix with correlation coeff. equal 0.5.
    sigma_1 = 1
    sigma_2 = 10
    corr = 0.5
    cov = np.array([[sigma_1**2, corr * sigma_1 * sigma_2],
                    [corr * sigma_1 * sigma_2, sigma_2**2]])

    # True theoretical mutual information.
    I_theory = (np.log(sigma_1) + np.log(sigma_2) -
                0.5 * np.log(np.linalg.det(cov)))

    rng = check_random_state(0)
    Z = rng.multivariate_normal(mean, cov, size=1000)

    x, y = Z[:, 0], Z[:, 1]

    # Theory and computed values won't be very close, assert that the
    # first figures after decimal point match.
    for n_neighbors in [3, 5, 7]:
        I_computed = _compute_mi(x, y, False, False, n_neighbors)
        assert_almost_equal(I_computed, I_theory, 1)
示例#10
0
def test_compute_mi_cd():
    # To test define a joint distribution as follows:
    # p(x, y) = p(x) p(y | x)
    # X ~ Bernoulli(p)
    # (Y | x = 0) ~ Uniform(-1, 1)
    # (Y | x = 1) ~ Uniform(0, 2)

    # Use the following formula for mutual information:
    # I(X; Y) = H(Y) - H(Y | X)
    # Two entropies can be computed by hand:
    # H(Y) = -(1-p)/2 * ln((1-p)/2) - p/2*log(p/2) - 1/2*log(1/2)
    # H(Y | X) = ln(2)

    # Now we need to implement sampling from out distribution, which is
    # done easily using conditional distribution logic.

    n_samples = 1000
    rng = check_random_state(0)

    for p in [0.3, 0.5, 0.7]:
        x = rng.uniform(size=n_samples) > p

        y = np.empty(n_samples)
        mask = x == 0
        y[mask] = rng.uniform(-1, 1, size=np.sum(mask))
        y[~mask] = rng.uniform(0, 2, size=np.sum(~mask))

        I_theory = -0.5 * ((1 - p) * np.log(0.5 * (1 - p)) +
                           p * np.log(0.5 * p) + np.log(0.5)) - np.log(2)

        # Assert the same tolerance.
        for n_neighbors in [3, 5, 7]:
            I_computed = _compute_mi(x, y, True, False, n_neighbors)
            assert_almost_equal(I_computed, I_theory, 1)
示例#11
0
def test_sample_weight_deviance():
    # Test if deviance supports sample weights.
    rng = check_random_state(13)
    sample_weight = np.ones(100)
    reg_y = rng.rand(100)
    clf_y = rng.randint(0, 2, size=100)
    mclf_y = rng.randint(0, 3, size=100)

    for Loss in LOSS_FUNCTIONS.values():
        if Loss is None:
            continue
        if issubclass(Loss, RegressionLossFunction):
            k = 1
            y = reg_y
            p = reg_y
        else:
            k = 2
            y = clf_y
            p = clf_y
            if Loss.is_multi_class:
                k = 3
                y = mclf_y
                # one-hot encoding
                p = np.zeros((y.shape[0], k), dtype=np.float64)
                for i in range(k):
                    p[:, i] = y == i

        loss = Loss(k)
        deviance_w_w = loss(y, p, sample_weight)
        deviance_wo_w = loss(y, p)
        assert deviance_wo_w == deviance_w_w
示例#12
0
def test_mutual_info_classif_mixed():
    # Here the target is discrete and there are two continuous and one
    # discrete feature. The idea of this test is clear from the code.
    rng = check_random_state(0)
    X = rng.rand(1000, 3)
    X[:, 1] += X[:, 0]
    y = ((0.5 * X[:, 0] + X[:, 2]) > 0.5).astype(int)
    X[:, 2] = X[:, 2] > 0.5

    mi = mutual_info_classif(X,
                             y,
                             discrete_features=[2],
                             n_neighbors=3,
                             random_state=0)
    assert_array_equal(np.argsort(-mi), [2, 0, 1])
    for n_neighbors in [5, 7, 9]:
        mi_nn = mutual_info_classif(X,
                                    y,
                                    discrete_features=[2],
                                    n_neighbors=n_neighbors,
                                    random_state=0)
        # Check that the continuous values have an higher MI with greater
        # n_neighbors
        assert mi_nn[0] > mi[0]
        assert mi_nn[1] > mi[1]
        # The n_neighbors should not have any effect on the discrete value
        # The MI should be the same
        assert mi_nn[2] == mi[2]
示例#13
0
def test_ball_tree_pickle():
    rng = check_random_state(0)
    X = rng.random_sample((10, 3))

    bt1 = BallTree(X, leaf_size=1)
    # Test if BallTree with callable metric is picklable
    bt1_pyfunc = BallTree(X, metric=dist_func, leaf_size=1, p=2)

    ind1, dist1 = bt1.query(X)
    ind1_pyfunc, dist1_pyfunc = bt1_pyfunc.query(X)

    def check_pickle_protocol(protocol):
        s = pickle.dumps(bt1, protocol=protocol)
        bt2 = pickle.loads(s)

        s_pyfunc = pickle.dumps(bt1_pyfunc, protocol=protocol)
        bt2_pyfunc = pickle.loads(s_pyfunc)

        ind2, dist2 = bt2.query(X)
        ind2_pyfunc, dist2_pyfunc = bt2_pyfunc.query(X)

        assert_array_almost_equal(ind1, ind2)
        assert_array_almost_equal(dist1, dist2)

        assert_array_almost_equal(ind1_pyfunc, ind2_pyfunc)
        assert_array_almost_equal(dist1_pyfunc, dist2_pyfunc)

        assert isinstance(bt2, BallTree)

    for protocol in (0, 1, 2):
        check_pickle_protocol(protocol)
示例#14
0
def test_linearsvc_fit_sampleweight():
    # check correct result when sample_weight is 1
    n_samples = len(X)
    unit_weight = np.ones(n_samples)
    clf = svm.LinearSVC(random_state=0).fit(X, Y)
    clf_unitweight = svm.LinearSVC(random_state=0).\
        fit(X, Y, sample_weight=unit_weight)

    # check if same as sample_weight=None
    assert_array_equal(clf_unitweight.predict(T), clf.predict(T))
    assert_allclose(clf.coef_, clf_unitweight.coef_, 1, 0.0001)

    # check that fit(X)  = fit([X1, X2, X3],sample_weight = [n1, n2, n3]) where
    # X = X1 repeated n1 times, X2 repeated n2 times and so forth

    random_state = check_random_state(0)
    random_weight = random_state.randint(0, 10, n_samples)
    lsvc_unflat = svm.LinearSVC(random_state=0).\
        fit(X, Y, sample_weight=random_weight)
    pred1 = lsvc_unflat.predict(T)

    X_flat = np.repeat(X, random_weight, axis=0)
    y_flat = np.repeat(Y, random_weight, axis=0)
    lsvc_flat = svm.LinearSVC(random_state=0).fit(X_flat, y_flat)
    pred2 = lsvc_flat.predict(T)

    assert_array_equal(pred1, pred2)
    assert_allclose(lsvc_unflat.coef_, lsvc_flat.coef_, 1, 0.0001)
示例#15
0
def test_sample_weight_init_estimators():
    # Smoke test for init estimators with sample weights.
    rng = check_random_state(13)
    X = rng.rand(100, 2)
    sample_weight = np.ones(100)
    reg_y = rng.rand(100)

    clf_y = rng.randint(0, 2, size=100)

    for Loss in LOSS_FUNCTIONS.values():
        if Loss is None:
            continue
        if issubclass(Loss, RegressionLossFunction):
            k = 1
            y = reg_y
        else:
            k = 2
            y = clf_y
            if Loss.is_multi_class:
                # skip multiclass
                continue

        loss = Loss(k)
        init_est = loss.init_estimator()
        init_est.fit(X, y)
        out = loss.get_init_raw_predictions(X, init_est)
        assert out.shape == (y.shape[0], 1)

        sw_init_est = loss.init_estimator()
        sw_init_est.fit(X, y, sample_weight=sample_weight)
        sw_out = loss.get_init_raw_predictions(X, sw_init_est)
        assert sw_out.shape == (y.shape[0], 1)

        # check if predictions match
        assert_allclose(out, sw_out, rtol=1e-2)
示例#16
0
def test_iforest_subsampled_features():
    # It tests non-regression for #5732 which failed at predict.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(boston.data[:50],
                                                        boston.target[:50],
                                                        random_state=rng)
    clf = IsolationForest(max_features=0.8)
    clf.fit(X_train, y_train)
    clf.predict(X_test)
示例#17
0
def test_query_haversine():
    rng = check_random_state(0)
    X = 2 * np.pi * rng.random_sample((40, 2))
    bt = BallTree(X, leaf_size=1, metric='haversine')
    dist1, ind1 = bt.query(X, k=5)
    dist2, ind2 = brute_force_neighbors(X, X, k=5, metric='haversine')

    assert_array_almost_equal(dist1, dist2)
    assert_array_almost_equal(ind1, ind2)
示例#18
0
def test_sample_weight_smoke():
    rng = check_random_state(13)
    y = rng.rand(100)
    pred = rng.rand(100)

    # least squares
    loss = LeastSquaresError(1)
    loss_wo_sw = loss(y, pred)
    loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32))
    assert_almost_equal(loss_wo_sw, loss_w_sw)
示例#19
0
 def generate_dataset(n_samples, centers, covariances, random_state=None):
     """Generate a multivariate normal data given some centers and
     covariances"""
     rng = check_random_state(random_state)
     X = np.vstack([
         rng.multivariate_normal(mean, cov, size=n_samples // len(centers))
         for mean, cov in zip(centers, covariances)
     ])
     y = np.hstack([[clazz] * (n_samples // len(centers))
                    for clazz in range(len(centers))])
     return X, y
示例#20
0
def test_safe_mask():
    random_state = check_random_state(0)
    X = random_state.rand(5, 4)
    X_csr = sp.csr_matrix(X)
    mask = [False, False, True, True, True]

    mask = safe_mask(X, mask)
    assert X[mask].shape[0] == 3

    mask = safe_mask(X_csr, mask)
    assert X_csr[mask].shape[0] == 3
示例#21
0
def test_omp_reaches_least_squares():
    # Use small simple data; it's a sanity check but OMP can stop early
    rng = check_random_state(0)
    n_samples, n_features = (10, 8)
    n_targets = 3
    X = rng.randn(n_samples, n_features)
    Y = rng.randn(n_samples, n_targets)
    omp = OrthogonalMatchingPursuit(n_nonzero_coefs=n_features)
    lstsq = LinearRegression()
    omp.fit(X, Y)
    lstsq.fit(X, Y)
    assert_array_almost_equal(omp.coef_, lstsq.coef_)
示例#22
0
def test_rfecv_mockclassifier():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = list(iris.target)  # regression test: list should be supported

    # Test using the score function
    rfecv = RFECV(estimator=MockClassifier(), step=1)
    rfecv.fit(X, y)
    # non-regression test for missing worst feature:
    assert len(rfecv.grid_scores_) == X.shape[1]
    assert len(rfecv.ranking_) == X.shape[1]
示例#23
0
def test_kd_tree_two_point(dualtree):
    n_samples, n_features = (100, 3)
    rng = check_random_state(0)
    X = rng.random_sample((n_samples, n_features))
    Y = rng.random_sample((n_samples, n_features))
    r = np.linspace(0, 1, 10)
    kdt = KDTree(X, leaf_size=10)

    D = DistanceMetric.get_metric("euclidean").pairwise(Y, X)
    counts_true = [(D <= ri).sum() for ri in r]

    counts = kdt.two_point_correlation(Y, r=r, dualtree=dualtree)
    assert_array_almost_equal(counts, counts_true)
示例#24
0
def test_input_data_size():
    # Regression test for #6288
    # Previoulsly, a metric requiring a particular input dimension would fail
    def custom_metric(x, y):
        assert x.shape[0] == 3
        return np.sum((x - y)**2)

    rng = check_random_state(0)
    X = rng.rand(10, 3)

    pyfunc = DistanceMetric.get_metric("pyfunc", func=dist_func, p=2)
    eucl = DistanceMetric.get_metric("euclidean")
    assert_array_almost_equal(pyfunc.pairwise(X), eucl.pairwise(X))
示例#25
0
def make_data(random_state, n_samples_per_center, grid_size, scale):
    random_state = check_random_state(random_state)
    centers = np.array([[i, j]
                        for i in range(grid_size)
                        for j in range(grid_size)])
    n_clusters_true, n_features = centers.shape

    noise = random_state.normal(
        scale=scale, size=(n_samples_per_center, centers.shape[1]))

    X = np.concatenate([c + noise for c in centers])
    y = np.concatenate([[i] * n_samples_per_center
                        for i in range(n_clusters_true)])
    return shuffle(X, y, random_state=random_state)
示例#26
0
def test_linear_regression_sparse(random_state=0):
    # Test that linear regression also works with sparse data
    random_state = check_random_state(random_state)
    for i in range(10):
        n = 100
        X = sparse.eye(n, n)
        beta = random_state.rand(n)
        y = X * beta[:, np.newaxis]

        ols = LinearRegression()
        ols.fit(X, y.ravel())
        assert_array_almost_equal(beta, ols.coef_ + ols.intercept_)

        assert_array_almost_equal(ols.predict(X) - y.ravel(), 0)
示例#27
0
def test_rfe_mockclassifier():
    generator = check_random_state(0)
    iris = load_iris()
    X = np.c_[iris.data, generator.normal(size=(len(iris.data), 6))]
    y = iris.target

    # dense model
    clf = MockClassifier()
    rfe = RFE(estimator=clf, n_features_to_select=4, step=0.1)
    rfe.fit(X, y)
    X_r = rfe.transform(X)
    clf.fit(X_r, y)
    assert len(rfe.ranking_) == X.shape[1]
    assert X_r.shape == iris.data.shape
示例#28
0
def test_kd_tree_kde(kernel, h):
    n_samples, n_features = (100, 3)
    rng = check_random_state(0)
    X = rng.random_sample((n_samples, n_features))
    Y = rng.random_sample((n_samples, n_features))
    kdt = KDTree(X, leaf_size=10)

    dens_true = compute_kernel_slow(Y, X, kernel, h)

    for rtol in [0, 1E-5]:
        for atol in [1E-6, 1E-2]:
            for breadth_first in (True, False):
                check_results(kernel, h, atol, rtol, breadth_first, Y, kdt,
                              dens_true)
示例#29
0
def test_linear_regression_sparse_multiple_outcome(random_state=0):
    # Test multiple-outcome linear regressions with sparse data
    random_state = check_random_state(random_state)
    X, y = make_sparse_uncorrelated(random_state=random_state)
    X = sparse.coo_matrix(X)
    Y = np.vstack((y, y)).T
    n_features = X.shape[1]

    ols = LinearRegression()
    ols.fit(X, Y)
    assert ols.coef_.shape == (2, n_features)
    Y_pred = ols.predict(X)
    ols.fit(X, y.ravel())
    y_pred = ols.predict(X)
    assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3)
示例#30
0
def test_rfe_cv_groups():
    generator = check_random_state(0)
    iris = load_iris()
    number_groups = 4
    groups = np.floor(np.linspace(0, number_groups, len(iris.target)))
    X = iris.data
    y = (iris.target > 0).astype(int)

    est_groups = RFECV(
        estimator=RandomForestClassifier(random_state=generator),
        step=1,
        scoring='accuracy',
        cv=GroupKFold(n_splits=2))
    est_groups.fit(X, y, groups=groups)
    assert est_groups.n_features_ > 0