dataset['name']) # evaluation ssim_patient = mriutils.ssim(output, target) rmse_patient = mriutils.rmse(output, target) ssim_eval_dataset.append(ssim_patient) rmse_eval_dataset.append(rmse_patient) print(" Patient {:d}: {:8.4f} {:8.4f}".format( patient, rmse_patient, ssim_patient)) output_path = '%s/%s/%d/' % (eval_output_dir, dataset['name'], patient) mriutils.saveAsMat( output, '%s/vn-%d.mat' % (output_path, epoch), 'result_vn', mat_dict={'normalization': np.asarray(normalization)}) mriutils.saveAsMat( target, (output_path, epoch), '%s/reference.mat', 'reference', mat_dict={'normalization': np.asarray(normalization)}) mriutils.saveAsMat( input0, (output_path, epoch), '%s/zero_filling.mat', 'result_zf', mat_dict={'normalization': np.asarray(normalization)}) print(" Dataset {:s}: {:8.4f} {:8.4f}".format( dataset['name'], np.mean(rmse_eval_dataset),
u_i = u_i * norm # renormalize u_volume.append(u_i) # postprocessing u_volume = mriutils.postprocess(np.asarray(u_volume), data_config['dataset']['name']) time_reco = time.time() - eval_start_time print('reconstruction of {} image took {:f}s'.format( u_volume.shape, time_reco)) print('saving reconstructed image to "{}"'.format(output_name)) # save mat file patient_id = '%s-p%d' % (data_config['dataset']['name'], data_config['dataset']['patient']) mriutils.saveAsMat(u_volume, '%s-vn-%s' % (output_name, patient_id), 'result_vn', mat_dict={'normalization': np.asarray(norm)}) # enhance volume v_min, v_max = mriutils.getContrastStretchingLimits( np.abs(u_volume), saturated_pixel=0.002) volume_enhanced = mriutils.normalize(np.abs(u_volume), v_min=v_min, v_max=v_max) # save pngs for i in range(1, num_slices + 1): mriutils.imsave(volume_enhanced[i - 1], '%s-vn-%s-sl%d.png' % (output_name, patient_id, i))
ssim_zf = mriutils.ssim(zf_volume, target_volume) print( "Zero filling: RMSE={:.4f} SSIM={:.4f} VN: RMSE={:.4f} SSIM={:.4f}" .format(rmse_zf, ssim_zf, rmse_vn, ssim_vn)) time_reco = time.time() - eval_start_time print('reconstruction of {} image took {:f}s'.format( u_volume.shape, time_reco)) print('saving reconstructed image to "{}"'.format(output_name)) # save mat files patient_id = '%s-p%d' % (data_config['dataset']['name'], data_config['dataset']['patient']) mriutils.saveAsMat(u_volume, '%s-vn-%s' % (output_name, patient_id), 'result_vn', mat_dict={'normalization': np.asarray(norm)}) mriutils.saveAsMat(zf_volume, '%s-zf-%s' % (output_name, patient_id), 'result_zf', mat_dict={'normalization': np.asarray(norm)}) mriutils.saveAsMat(target_volume, '%s-ref-%s' % (output_name, patient_id), 'reference', mat_dict={'normalization': np.asarray(norm)}) # enhance image with same parameters for all images v_min, v_max = mriutils.getContrastStretchingLimits( np.abs(target_volume), saturated_pixel=0.002) target_enhanced = mriutils.normalize(np.abs(target_volume), v_min=v_min,