def execute(): #pylint: disable=unused-variable import os, shutil from mrtrix3 import app, file, image, path, run #pylint: disable=redefined-builtin lmax_option = '' if app.args.lmax: lmax_option = ' -lmax ' + app.args.lmax if app.args.max_iters < 2: app.error('Number of iterations must be at least 2') for iteration in range(0, app.args.max_iters): prefix = 'iter' + str(iteration) + '_' if iteration == 0: RF_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_RF = '1 -1 1' with open(RF_in_path, 'w') as f: f.write(init_RF) iter_lmax_option = ' -lmax 4' else: RF_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path + iter_lmax_option) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') file.delTemporary(prefix + 'FOD.mif') if iteration: file.delTemporary(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') file.delTemporary(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif -number 1') file.delTemporary(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') file.delTemporary(prefix + 'all_dirs.mif') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult ' + prefix + 'CF.mif') file.delTemporary(prefix + 'first_peaks.mif') file.delTemporary(prefix + 'second_peaks.mif') # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.sf_voxels) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) file.delTemporary(prefix + 'first_dir.mif') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration - 1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') file.delTemporary('iter' + str(iteration - 1) + '_SF.mif') max_diff = image.statistic(prefix + 'SF_diff.mif', 'max') file.delTemporary(prefix + 'SF_diff.mif') if int(max_diff) == 0: app.console( 'Convergence of SF voxel selection detected at iteration ' + str(iteration)) file.delTemporary(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.iter_voxels) + ' - | maskfilter - dilate - -npass ' + str(app.args.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') file.delTemporary(prefix + 'CF.mif') # Commence the next iteration # If terminating due to running out of iterations, still need to put the results in the appropriate location if not os.path.exists('response.txt'): app.console('Exiting after maximum ' + str(app.args.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.args.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
def execute(): #pylint: disable=unused-variable import math, os, shutil from mrtrix3 import app, image, matrix, MRtrixError, path, run lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax convergence_change = 0.01 * app.ARGS.convergence progress = app.ProgressBar('Optimising') iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' # How to initialise response function? # old dwi2response command used mean & standard deviation of DWI data; however # this may force the output FODs to lmax=2 at the first iteration # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right # Other option is to do as before, but get the ratio between l=0 and l=2, and # generate l=4,6,... using that amplitude ratio if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' # Grab the mean and standard deviation across all volumes in a single mrstats call # Also scale them to reflect the fact that we're moving to the SH basis mean = image.statistic('dwi.mif', 'mean', '-mask mask.mif -allvolumes') * math.sqrt( 4.0 * math.pi) std = image.statistic('dwi.mif', 'std', '-mask mask.mif -allvolumes') * math.sqrt( 4.0 * math.pi) # Now produce the initial response function # Let's only do it to lmax 4 init_rf = [ str(mean), str(-0.5 * std), str(0.25 * std * std / mean) ] with open('init_RF.txt', 'w') as init_rf_file: init_rf_file.write(' '.join(init_rf)) else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF.mif' # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and directions of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif') app.cleanup(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') app.cleanup(prefix + 'all_dirs.mif') # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div ' + prefix + 'peak_ratio.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') run.command('mrcalc ' + prefix + 'peak_ratio.mif ' + str(app.ARGS.peak_ratio) + ' -lt ' + mask_in_path + ' -mult ' + prefix + 'SF.mif -datatype bit') app.cleanup(prefix + 'peak_ratio.mif') # Make sure image isn't empty sf_voxel_count = image.statistic(prefix + 'SF.mif', 'count', '-mask ' + prefix + 'SF.mif') if not sf_voxel_count: raise MRtrixError( 'Aborting: All voxels have been excluded from single-fibre selection' ) # Generate a new response function run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, ' + str(sf_voxel_count) + ' voxels, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Detect convergence # Look for a change > some percentage - don't bother looking at the masks if iteration > 0: old_rf = matrix.load_vector(rf_in_path) reiterate = False for old_value, new_value in zip(old_rf, new_rf): mean = 0.5 * (old_value + new_value) diff = math.fabs(0.5 * (old_value - new_value)) ratio = diff / mean if ratio > convergence_change: reiterate = True if not reiterate: run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif') break app.cleanup(rf_in_path) app.cleanup(mask_in_path) iteration += 1 progress.done() # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location if os.path.exists('response.txt'): app.console('Exited at iteration ' + str(iteration + 1) + ' with ' + str(sf_voxel_count) + ' SF voxels due to unchanged RF coefficients') else: app.console('Exited after maximum ' + str(app.ARGS.max_iters) + ' iterations with ' + str(sf_voxel_count) + ' SF voxels') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input), force=app.FORCE_OVERWRITE)
def runSubject(bids_dir, label, output_prefix): output_dir = os.path.join(output_prefix, label) if os.path.exists(output_dir): shutil.rmtree(output_dir) os.makedirs(output_dir) os.makedirs(os.path.join(output_dir, 'connectome')) os.makedirs(os.path.join(output_dir, 'dwi')) fsl_path = os.environ.get('FSLDIR', '') if not fsl_path: app.error( 'Environment variable FSLDIR is not set; please run appropriate FSL configuration script' ) flirt_cmd = fsl.exeName('flirt') fslanat_cmd = fsl.exeName('fsl_anat') fsl_suffix = fsl.suffix() unring_cmd = 'unring.a64' if not find_executable(unring_cmd): app.console('Command \'' + unring_cmd + '\' not found; cannot perform Gibbs ringing removal') unring_cmd = '' dwibiascorrect_algo = '-ants' if not find_executable('N4BiasFieldCorrection'): # Can't use findFSLBinary() here, since we want to proceed even if it's not found if find_executable('fast') or find_executable('fsl5.0-fast'): dwibiascorrect_algo = '-fsl' app.console('Could not find ANTs program N4BiasFieldCorrection; ' 'using FSL FAST for bias field correction') else: dwibiascorrect_algo = '' app.warn( 'Could not find ANTs program \'N4BiasFieldCorrection\' or FSL program \'fast\'; ' 'will proceed without performing DWI bias field correction') if not app.args.parcellation: app.error( 'For participant-level analysis, desired parcellation must be provided using the -parcellation option' ) parc_image_path = '' parc_lut_file = '' mrtrix_lut_file = os.path.join( os.path.dirname(os.path.abspath(app.__file__)), os.pardir, os.pardir, 'share', 'mrtrix3', 'labelconvert') if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009': if not 'FREESURFER_HOME' in os.environ: app.error( 'Environment variable FREESURFER_HOME not set; please verify FreeSurfer installation' ) if not find_executable('recon-all'): app.error( 'Could not find FreeSurfer script recon-all; please verify FreeSurfer installation' ) parc_lut_file = os.path.join(os.environ['FREESURFER_HOME'], 'FreeSurferColorLUT.txt') if app.args.parcellation == 'fs_2005': mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_default.txt') else: mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'fs_a2009s.txt') if app.args.parcellation == 'aal' or app.args.parcellation == 'aal2': mni152_path = os.path.join(fsl_path, 'data', 'standard', 'MNI152_T1_1mm.nii.gz') if not os.path.isfile(mni152_path): app.error( 'Could not find MNI152 template image within FSL installation (expected location: ' + mni152_path + ')') if app.args.parcellation == 'aal': parc_image_path = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.nii')) parc_lut_file = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V4.txt')) mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal.txt') else: parc_image_path = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.nii')) parc_lut_file = os.path.abspath( os.path.join(os.sep, 'opt', 'aal', 'ROI_MNI_V5.txt')) mrtrix_lut_file = os.path.join(mrtrix_lut_file, 'aal2.txt') if parc_image_path and not os.path.isfile(parc_image_path): if app.args.atlas_path: parc_image_path = [ parc_image_path, os.path.join(os.path.dirname(app.args.atlas_path), os.path.basename(parc_image_path)) ] if os.path.isfile(parc_image_path[1]): parc_image_path = parc_image_path[1] else: app.error( 'Could not find parcellation image (tested locations: ' + str(parc_image_path) + ')') else: app.error( 'Could not find parcellation image (expected location: ' + parc_image_path + ')') if not os.path.isfile(parc_lut_file): if app.args.atlas_path: parc_lut_file = [ parc_lut_file, os.path.join(os.path.dirname(app.args.atlas_path), os.path.basename(parc_lut_file)) ] if os.path.isfile(parc_lut_file[1]): parc_lut_file = parc_lut_file[1] else: app.error( 'Could not find parcellation lookup table file (tested locations: ' + str(parc_lut_file) + ')') else: app.error( 'Could not find parcellation lookup table file (expected location: ' + parc_lut_file + ')') if not os.path.exists(mrtrix_lut_file): app.error( 'Could not find MRtrix3 connectome lookup table file (expected location: ' + mrtrix_lut_file + ')') app.makeTempDir() # Need to perform an initial import of JSON data using mrconvert; so let's grab the diffusion gradient table as well # If no bvec/bval present, need to go down the directory listing # Only try to import JSON file if it's actually present # direction in the acquisition they'll need to be split across multiple files # May need to concatenate more than one input DWI, since if there's more than one phase-encode direction # in the acquired DWIs (i.e. not just those used for estimating the inhomogeneity field), they will # need to be stored as separate NIfTI files in the 'dwi/' directory. dwi_image_list = glob.glob( os.path.join(bids_dir, label, 'dwi', label) + '*_dwi.nii*') dwi_index = 1 for entry in dwi_image_list: # os.path.split() falls over with .nii.gz extensions; only removes the .gz prefix = entry.split(os.extsep)[0] if os.path.isfile(prefix + '.bval') and os.path.isfile(prefix + '.bvec'): prefix = prefix + '.' else: prefix = os.path.join(bids_dir, 'dwi') if not (os.path.isfile(prefix + 'bval') and os.path.isfile(prefix + 'bvec')): app.error( 'Unable to locate valid diffusion gradient table for image \'' + entry + '\'') grad_import_option = ' -fslgrad ' + prefix + 'bvec ' + prefix + 'bval' json_path = prefix + 'json' if os.path.isfile(json_path): json_import_option = ' -json_import ' + json_path else: json_import_option = '' run.command('mrconvert ' + entry + grad_import_option + json_import_option + ' ' + path.toTemp('dwi' + str(dwi_index) + '.mif', True)) dwi_index += 1 # Go hunting for reversed phase-encode data dedicated to field map estimation fmap_image_list = [] fmap_dir = os.path.join(bids_dir, label, 'fmap') fmap_index = 1 if os.path.isdir(fmap_dir): if app.args.preprocessed: app.error('fmap/ directory detected for subject \'' + label + '\' despite use of ' + option_prefix + 'preprocessed option') fmap_image_list = glob.glob( os.path.join(fmap_dir, label) + '_dir-*_epi.nii*') for entry in fmap_image_list: prefix = entry.split(os.extsep)[0] json_path = prefix + '.json' with open(json_path, 'r') as f: json_elements = json.load(f) if 'IntendedFor' in json_elements and not any( i.endswith(json_elements['IntendedFor']) for i in dwi_image_list): app.console('Image \'' + entry + '\' is not intended for use with DWIs; skipping') continue if os.path.isfile(json_path): json_import_option = ' -json_import ' + json_path # fmap files will not come with any gradient encoding in the JSON; # therefore we need to add it manually ourselves so that mrcat / mrconvert can # appropriately handle the table once these images are concatenated with the DWIs fmap_image_size = image.Header(entry).size() fmap_image_num_volumes = 1 if len( fmap_image_size) == 3 else fmap_image_size[3] run.command('mrconvert ' + entry + json_import_option + ' -set_property dw_scheme \"' + '\\n'.join(['0,0,1,0'] * fmap_image_num_volumes) + '\" ' + path.toTemp('fmap' + str(fmap_index) + '.mif', True)) fmap_index += 1 else: app.warn('No corresponding .json file found for image \'' + entry + '\'; skipping') fmap_image_list = [ 'fmap' + str(index) + '.mif' for index in range(1, fmap_index) ] # If there's no data in fmap/ directory, need to check to see if there's any phase-encoding # contrast within the input DWI(s) elif len(dwi_image_list) < 2 and not app.args.preprocessed: app.error( 'Inadequate data for pre-processing of subject \'' + label + '\': No phase-encoding contrast in input DWIs or fmap/ directory') dwi_image_list = [ 'dwi' + str(index) + '.mif' for index in range(1, dwi_index) ] # Import anatomical image run.command('mrconvert ' + os.path.join(bids_dir, label, 'anat', label + '_T1w.nii.gz') + ' ' + path.toTemp('T1.mif', True)) cwd = os.getcwd() app.gotoTempDir() dwipreproc_se_epi = '' dwipreproc_se_epi_option = '' # For automated testing, down-sampled images are used. However, this invalidates the requirements of # both MP-PCA denoising and Gibbs ringing removal. In addition, eddy can still take a long time # despite the down-sampling. Therefore, provide images that have been pre-processed to the stage # where it is still only DWI, JSON & bvecs/bvals that need to be provided. if app.args.preprocessed: if len(dwi_image_list) > 1: app.error( 'If DWIs have been pre-processed, then only a single DWI file should need to be provided' ) app.console( 'Skipping MP-PCA denoising, ' + ('Gibbs ringing removal, ' if unring_cmd else '') + 'distortion correction and bias field correction due to use of ' + option_prefix + 'preprocessed option') run.function(os.rename, dwi_image_list[0], 'dwi.mif') else: # Do initial image pre-processing (denoising, Gibbs ringing removal if available, distortion correction & bias field correction) as normal # Concatenate any SE EPI images with the DWIs before denoising (& unringing), then # separate them again after the fact dwidenoise_input = 'dwidenoise_input.mif' fmap_num_volumes = 0 if fmap_image_list: run.command('mrcat ' + ' '.join(fmap_image_list) + ' fmap_cat.mif -axis 3') for i in fmap_image_list: file.delTemporary(i) fmap_num_volumes = image.Header('fmap_cat.mif').size()[3] dwidenoise_input = 'all_cat.mif' run.command('mrcat fmap_cat.mif ' + ' '.join(dwi_image_list) + ' ' + dwidenoise_input + ' -axis 3') file.delTemporary('fmap_cat.mif') else: # Even if no explicit fmap images, may still need to concatenate multiple DWI inputs if len(dwi_image_list) > 1: run.command('mrcat ' + ' '.join(dwi_image_list) + ' ' + dwidenoise_input + ' -axis 3') else: run.function(shutil.move, dwi_image_list[0], dwidenoise_input) for i in dwi_image_list: file.delTemporary(i) # Step 1: Denoise run.command('dwidenoise ' + dwidenoise_input + ' dwi_denoised.' + ('nii' if unring_cmd else 'mif')) if unring_cmd: run.command('mrinfo ' + dwidenoise_input + ' -json_keyval input.json') file.delTemporary(dwidenoise_input) # Step 2: Gibbs ringing removal (if available) if unring_cmd: run.command(unring_cmd + ' dwi_denoised.nii dwi_unring' + fsl_suffix + ' -n 100') file.delTemporary('dwi_denoised.nii') unring_output_path = fsl.findImage('dwi_unring') run.command('mrconvert ' + unring_output_path + ' dwi_unring.mif -json_import input.json') file.delTemporary(unring_output_path) file.delTemporary('input.json') # If fmap images and DWIs have been concatenated, now is the time to split them back apart dwipreproc_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif' if fmap_num_volumes: cat_input = 'dwi_unring.mif' if unring_cmd else 'dwi_denoised.mif' dwipreproc_se_epi = 'se_epi.mif' run.command('mrconvert ' + cat_input + ' ' + dwipreproc_se_epi + ' -coord 3 0:' + str(fmap_num_volumes - 1)) cat_num_volumes = image.Header(cat_input).size()[3] run.command('mrconvert ' + cat_input + ' dwipreproc_in.mif -coord 3 ' + str(fmap_num_volumes) + ':' + str(cat_num_volumes - 1)) file.delTemporary(dwipreproc_input) dwipreproc_input = 'dwipreproc_in.mif' dwipreproc_se_epi_option = ' -se_epi ' + dwipreproc_se_epi # Step 3: Distortion correction run.command('dwipreproc ' + dwipreproc_input + ' dwi_preprocessed.mif -rpe_header' + dwipreproc_se_epi_option) file.delTemporary(dwipreproc_input) if dwipreproc_se_epi: file.delTemporary(dwipreproc_se_epi) # Step 4: Bias field correction if dwibiascorrect_algo: run.command('dwibiascorrect dwi_preprocessed.mif dwi.mif ' + dwibiascorrect_algo) file.delTemporary('dwi_preprocessed.mif') else: run.function(shutil.move, 'dwi_preprocessed.mif', 'dwi.mif') # No longer branching based on whether or not -preprocessed was specified # Step 5: Generate a brain mask for DWI run.command('dwi2mask dwi.mif dwi_mask.mif') # Step 6: Perform brain extraction on the T1 image in its original space # (this is necessary for histogram matching prior to registration) # Use fsl_anat script run.command('mrconvert T1.mif T1.nii -stride -1,+2,+3') run.command(fslanat_cmd + ' -i T1.nii --noseg --nosubcortseg') run.command('mrconvert ' + fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain_mask') + ' T1_mask.mif -datatype bit') run.command('mrconvert ' + fsl.findImage('T1.anat' + os.sep + 'T1_biascorr_brain') + ' T1_biascorr_brain.mif') file.delTemporary('T1.anat') # Step 7: Generate target images for T1->DWI registration run.command('dwiextract dwi.mif -bzero - | ' 'mrcalc - 0.0 -max - | ' 'mrmath - mean -axis 3 dwi_meanbzero.mif') run.command( 'mrcalc 1 dwi_meanbzero.mif -div dwi_mask.mif -mult - | ' 'mrhistmatch - T1_biascorr_brain.mif dwi_pseudoT1.mif -mask_input dwi_mask.mif -mask_target T1_mask.mif' ) run.command( 'mrcalc 1 T1_biascorr_brain.mif -div T1_mask.mif -mult - | ' 'mrhistmatch - dwi_meanbzero.mif T1_pseudobzero.mif -mask_input T1_mask.mif -mask_target dwi_mask.mif' ) # Step 8: Perform T1->DWI registration # Note that two registrations are performed: Even though we have a symmetric registration, # generation of the two histogram-matched images means that you will get slightly different # answers depending on which synthesized image & original image you use. run.command( 'mrregister T1_biascorr_brain.mif dwi_pseudoT1.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_T1_to_pseudoT1.txt' ) file.delTemporary('T1_biascorr_brain.mif') run.command( 'mrregister T1_pseudobzero.mif dwi_meanbzero.mif -type rigid -mask1 T1_mask.mif -mask2 dwi_mask.mif -rigid rigid_pseudobzero_to_bzero.txt' ) file.delTemporary('dwi_meanbzero.mif') run.command( 'transformcalc rigid_T1_to_pseudoT1.txt rigid_pseudobzero_to_bzero.txt average rigid_T1_to_dwi.txt' ) file.delTemporary('rigid_T1_to_pseudoT1.txt') file.delTemporary('rigid_pseudobzero_to_bzero.txt') run.command( 'mrtransform T1.mif T1_registered.mif -linear rigid_T1_to_dwi.txt') file.delTemporary('T1.mif') # Note: Since we're using a mask from fsl_anat (which crops the FoV), but using it as input to 5ttge fsl # (which is receiving the raw T1), we need to resample in order to have the same dimensions between these two run.command( 'mrtransform T1_mask.mif T1_mask_registered.mif -linear rigid_T1_to_dwi.txt -template T1_registered.mif -interp nearest' ) file.delTemporary('T1_mask.mif') # Step 9: Generate 5TT image for ACT run.command( '5ttgen fsl T1_registered.mif 5TT.mif -mask T1_mask_registered.mif') file.delTemporary('T1_mask_registered.mif') # Step 10: Estimate response functions for spherical deconvolution run.command( 'dwi2response dhollander dwi.mif response_wm.txt response_gm.txt response_csf.txt -mask dwi_mask.mif' ) # Step 11: Determine whether we are working with single-shell or multi-shell data shells = [ int(round(float(value))) for value in image.mrinfo('dwi.mif', 'shellvalues').strip().split() ] multishell = (len(shells) > 2) # Step 12: Perform spherical deconvolution # Use a dilated mask for spherical deconvolution as a 'safety margin' - # ACT should be responsible for stopping streamlines before they reach the edge of the DWI mask run.command('maskfilter dwi_mask.mif dilate dwi_mask_dilated.mif -npass 3') if multishell: run.command( 'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_gm.txt FOD_GM.mif response_csf.txt FOD_CSF.mif ' '-mask dwi_mask_dilated.mif -lmax 10,0,0') file.delTemporary('FOD_GM.mif') file.delTemporary('FOD_CSF.mif') else: # Still use the msmt_csd algorithm with single-shell data: Use hard non-negativity constraint # Also incorporate the CSF response to provide some fluid attenuation run.command( 'dwi2fod msmt_csd dwi.mif response_wm.txt FOD_WM.mif response_csf.txt FOD_CSF.mif ' '-mask dwi_mask_dilated.mif -lmax 10,0') file.delTemporary('FOD_CSF.mif') # Step 13: Generate the grey matter parcellation # The necessary steps here will vary significantly depending on the parcellation scheme selected run.command( 'mrconvert T1_registered.mif T1_registered.nii -stride +1,+2,+3') if app.args.parcellation == 'fs_2005' or app.args.parcellation == 'fs_2009': # Run FreeSurfer pipeline on this subject's T1 image run.command('recon-all -sd ' + app.tempDir + ' -subjid freesurfer -i T1_registered.nii') run.command('recon-all -sd ' + app.tempDir + ' -subjid freesurfer -all') # Grab the relevant parcellation image and target lookup table for conversion parc_image_path = os.path.join('freesurfer', 'mri') if app.args.parcellation == 'fs_2005': parc_image_path = os.path.join(parc_image_path, 'aparc+aseg.mgz') else: parc_image_path = os.path.join(parc_image_path, 'aparc.a2009s+aseg.mgz') # Perform the index conversion run.command('labelconvert ' + parc_image_path + ' ' + parc_lut_file + ' ' + mrtrix_lut_file + ' parc_init.mif') if app.cleanup: run.function(shutil.rmtree, 'freesurfer') # Fix the sub-cortical grey matter parcellations using FSL FIRST run.command('labelsgmfix parc_init.mif T1_registered.mif ' + mrtrix_lut_file + ' parc.mif') file.delTemporary('parc_init.mif') elif app.args.parcellation == 'aal' or app.args.parcellation == 'aal2': # Can use MNI152 image provided with FSL for registration run.command(flirt_cmd + ' -ref ' + mni152_path + ' -in T1_registered.nii -omat T1_to_MNI_FLIRT.mat -dof 12') run.command('transformconvert T1_to_MNI_FLIRT.mat T1_registered.nii ' + mni152_path + ' flirt_import T1_to_MNI_MRtrix.mat') file.delTemporary('T1_to_MNI_FLIRT.mat') run.command( 'transformcalc T1_to_MNI_MRtrix.mat invert MNI_to_T1_MRtrix.mat') file.delTemporary('T1_to_MNI_MRtrix.mat') run.command('mrtransform ' + parc_image_path + ' AAL.mif -linear MNI_to_T1_MRtrix.mat ' '-template T1_registered.mif -interp nearest') file.delTemporary('MNI_to_T1_MRtrix.mat') run.command('labelconvert AAL.mif ' + parc_lut_file + ' ' + mrtrix_lut_file + ' parc.mif') file.delTemporary('AAL.mif') else: app.error('Unknown parcellation scheme requested: ' + app.args.parcellation) file.delTemporary('T1_registered.nii') # Step 14: Generate the tractogram # If not manually specified, determine the appropriate number of streamlines based on the number of nodes in the parcellation: # mean edge weight of 1,000 streamlines # A smaller FOD amplitude threshold of 0.06 (default 0.1) is used for tracking due to the use of the msmt_csd # algorithm, which imposes a hard rather than soft non-negativity constraint num_nodes = int(image.statistic('parc.mif', 'max')) num_streamlines = 1000 * num_nodes * num_nodes if app.args.streamlines: num_streamlines = app.args.streamlines run.command( 'tckgen FOD_WM.mif tractogram.tck -act 5TT.mif -backtrack -crop_at_gmwmi -cutoff 0.06 -maxlength 250 -power 0.33 ' '-select ' + str(num_streamlines) + ' -seed_dynamic FOD_WM.mif') # Step 15: Use SIFT2 to determine streamline weights fd_scale_gm_option = '' if not multishell: fd_scale_gm_option = ' -fd_scale_gm' run.command( 'tcksift2 tractogram.tck FOD_WM.mif weights.csv -act 5TT.mif -out_mu mu.txt' + fd_scale_gm_option) # Step 16: Generate a TDI (to verify that SIFT2 has worked correctly) with open('mu.txt', 'r') as f: mu = float(f.read()) run.command( 'tckmap tractogram.tck -tck_weights_in weights.csv -template FOD_WM.mif -precise - | ' 'mrcalc - ' + str(mu) + ' -mult tdi.mif') # Step 17: Generate the connectome # Only provide the standard density-weighted connectome for now run.command( 'tck2connectome tractogram.tck parc.mif connectome.csv -tck_weights_in weights.csv' ) file.delTemporary('weights.csv') # Move necessary files to output directory run.function( shutil.copy, 'connectome.csv', os.path.join(output_dir, 'connectome', label + '_connectome.csv')) run.command('mrconvert dwi.mif ' + os.path.join(output_dir, 'dwi', label + '_dwi.nii.gz') + ' -export_grad_fsl ' + os.path.join(output_dir, 'dwi', label + '_dwi.bvec') + ' ' + os.path.join(output_dir, 'dwi', label + '_dwi.bval') + ' -json_export ' + os.path.join(output_dir, 'dwi', label + '_dwi.json')) run.command('mrconvert tdi.mif ' + os.path.join(output_dir, 'dwi', label + '_tdi.nii.gz')) run.function(shutil.copy, 'mu.txt', os.path.join(output_dir, 'connectome', label + '_mu.txt')) run.function(shutil.copy, 'response_wm.txt', os.path.join(output_dir, 'dwi', label + '_response.txt')) # Manually wipe and zero the temp directory (since we might be processing more than one subject) os.chdir(cwd) if app.cleanup: app.console('Deleting temporary directory ' + app.tempDir) # Can't use run.function() here; it'll try to write to the log file that resides in the temp directory just deleted shutil.rmtree(app.tempDir) else: app.console('Contents of temporary directory kept, location: ' + app.tempDir) app.tempDir = ''
def runGroup(output_dir): # Check presence of all required input files before proceeding # Pre-calculate paths of all files since many will be used in more than one location class subjectPaths(object): def __init__(self, label): self.in_dwi = os.path.join(output_dir, label, 'dwi', label + '_dwi.nii.gz') self.in_bvec = os.path.join(output_dir, label, 'dwi', label + '_dwi.bvec') self.in_bval = os.path.join(output_dir, label, 'dwi', label + '_dwi.bval') self.in_json = os.path.join(output_dir, label, 'dwi', label + '_dwi.json') self.in_rf = os.path.join(output_dir, label, 'dwi', label + '_response.txt') self.in_connectome = os.path.join(output_dir, label, 'connectome', label + '_connectome.csv') self.in_mu = os.path.join(output_dir, label, 'connectome', label + '_mu.txt') for entry in vars(self).values(): if not os.path.exists(entry): app.error( 'Unable to find critical subject data (expected location: ' + entry + ')') with open(self.in_mu, 'r') as f: self.mu = float(f.read()) self.RF = [] with open(self.in_rf, 'r') as f: for line in f: self.RF.append([float(v) for v in line.split()]) self.temp_mask = os.path.join('masks', label + '.mif') self.temp_fa = os.path.join('images', label + '.mif') self.temp_bzero = os.path.join('bzeros', label + '.mif') self.temp_warp = os.path.join('warps', label + '.mif') self.temp_voxels = os.path.join('voxels', label + '.mif') self.median_bzero = 0.0 self.dwiintensitynorm_factor = 1.0 self.RF_multiplier = 1.0 self.global_multiplier = 1.0 self.temp_connectome = os.path.join('connectomes', label + '.csv') self.out_scale_bzero = os.path.join( output_dir, label, 'connectome', label + '_scalefactor_bzero.csv') self.out_scale_RF = os.path.join( output_dir, label, 'connectome', label + '_scalefactor_response.csv') self.out_connectome = os.path.join( output_dir, label, 'connectome', label + '_connectome_scaled.csv') self.label = label subject_list = [ 'sub-' + sub_dir.split("-")[-1] for sub_dir in glob.glob(os.path.join(output_dir, 'sub-*')) ] if not subject_list: app.error( 'No processed subject data found in output directory for group analysis' ) subjects = [] for label in subject_list: subjects.append(subjectPaths(label)) app.makeTempDir() app.gotoTempDir() # First pass through subject data in group analysis: # - Grab DWI data (written back from single-subject analysis back into BIDS format) # - Generate mask and FA images to be used in populate template generation # - Generate mean b=0 image for each subject for later use progress = app.progressBar('Importing and preparing subject data', len(subjects)) run.function(os.makedirs, 'bzeros') run.function(os.makedirs, 'images') run.function(os.makedirs, 'masks') for s in subjects: grad_import_option = ' -fslgrad ' + s.in_bvec + ' ' + s.in_bval run.command('dwi2mask ' + s.in_dwi + ' ' + s.temp_mask + grad_import_option) run.command('dwi2tensor ' + s.in_dwi + ' - -mask ' + s.temp_mask + grad_import_option + ' | tensor2metric - -fa ' + s.temp_fa) run.command('dwiextract ' + s.in_dwi + grad_import_option + ' - -bzero | mrmath - mean ' + s.temp_bzero + ' -axis 3') progress.increment() progress.done() # First group-level calculation: Generate the population FA template app.console( 'Generating population template for inter-subject intensity normalisation WM mask derivation' ) run.command( 'population_template images -mask_dir masks -warp_dir warps template.mif ' '-type rigid_affine_nonlinear -rigid_scale 0.25,0.5,0.8,1.0 -affine_scale 0.7,0.8,1.0,1.0 ' '-nl_scale 0.5,0.75,1.0,1.0,1.0 -nl_niter 5,5,5,5,5 -linear_no_pause') file.delTemporary('images') file.delTemporary('masks') # Second pass through subject data in group analysis: # - Warp template FA image back to subject space & threshold to define a WM mask in subject space # - Calculate the median subject b=0 value within this mask # - Store this in a file, and contribute to calculation of the mean of these values across subjects # - Contribute to the group average response function progress = app.progressBar( 'Generating group-average response function and intensity normalisation factors', len(subjects) + 1) run.function(os.makedirs, 'voxels') sum_median_bzero = 0.0 sum_RF = [] for s in subjects: run.command('mrtransform template.mif -warp_full ' + s.temp_warp + ' - -from 2 -template ' + s.temp_bzero + ' | ' 'mrthreshold - ' + s.temp_voxels + ' -abs 0.4') s.median_bzero = float( image.statistic(s.temp_bzero, 'median', '-mask ' + s.temp_voxels)) file.delTemporary(s.temp_bzero) file.delTemporary(s.temp_voxels) file.delTemporary(s.temp_warp) sum_median_bzero += s.median_bzero if sum_RF: sum_RF = [[a + b for a, b in zip(one, two)] for one, two in zip(sum_RF, s.RF)] else: sum_RF = s.RF progress.increment() file.delTemporary('bzeros') file.delTemporary('voxels') file.delTemporary('warps') progress.done() # Second group-level calculation: # - Calculate the mean of median b=0 values # - Calculate the mean response function, and extract the l=0 values from it mean_median_bzero = sum_median_bzero / len(subjects) mean_RF = [[v / len(subjects) for v in line] for line in sum_RF] mean_RF_lzero = [line[0] for line in mean_RF] # Third pass through subject data in group analysis: # - Scale the connectome strengths: # - Multiply by SIFT proportionality coefficient mu # - Multiply by (mean median b=0) / (subject median b=0) # - Multiply by (subject RF size) / (mean RF size) # (needs to account for multi-shell data) # - Write the result to file progress = app.progressBar( 'Applying normalisation scaling to subject connectomes', len(subjects)) run.function(os.makedirs, 'connectomes') for s in subjects: RF_lzero = [line[0] for line in s.RF] s.RF_multiplier = 1.0 for (mean, subj) in zip(mean_RF_lzero, RF_lzero): s.RF_multiplier = s.RF_multiplier * subj / mean # Don't want to be scaling connectome independently for differences in RF l=0 terms across all shells; # use the geometric mean of the per-shell scale factors s.RF_multiplier = math.pow(s.RF_multiplier, 1.0 / len(mean_RF_lzero)) s.bzero_multiplier = mean_median_bzero / s.median_bzero s.global_multiplier = s.mu * s.bzero_multiplier * s.RF_multiplier connectome = [] with open(s.in_connectome, 'r') as f: for line in f: connectome.append([float(v) for v in line.split()]) with open(s.temp_connectome, 'w') as f: for line in connectome: f.write(' '.join([str(v * s.global_multiplier) for v in line]) + '\n') progress.increment() progress.done() # Third group-level calculation: Generate the group mean connectome # For any higher-level analysis (e.g. NBSE, computing connectome global measures, etc.), # trying to incorporate such analysis into this particular pipeline script is likely to # overly complicate the interface, and not actually provide much in terms of # convenience / reproducibility guarantees. The primary functionality of this group-level # analysis is therefore to achieve inter-subject connection density normalisation; users # then have the flexibility to subsequently analyse the data however they choose (ideally # based on subject classification data provided with the BIDS-compliant dataset). progress = app.progressBar('Calculating group mean connectome', len(subjects) + 1) mean_connectome = [] for s in subjects: connectome = [] with open(s.temp_connectome, 'r') as f: for line in f: connectome.append([float(v) for v in line.split()]) if mean_connectome: mean_connectome = [[c1 + c2 for c1, c2 in zip(r1, r2)] for r1, r2 in zip(mean_connectome, connectome)] else: mean_connectome = connectome progress.increment() mean_connectome = [[v / len(subjects) for v in row] for row in mean_connectome] progress.done() # Write results of interest back to the output directory; # both per-subject and group information progress = app.progressBar('Writing results to output directory', len(subjects) + 2) for s in subjects: run.function(shutil.copyfile, s.temp_connectome, s.out_connectome) with open(s.out_scale_bzero, 'w') as f: f.write(str(s.bzero_multiplier)) with open(s.out_scale_RF, 'w') as f: f.write(str(s.RF_multiplier)) progress.increment() with open(os.path.join(output_dir, 'mean_response.txt'), 'w') as f: for row in mean_RF: f.write(' '.join([str(v) for v in row]) + '\n') progress.increment() with open(os.path.join(output_dir, 'mean_connectome.csv'), 'w') as f: for row in mean_connectome: f.write(' '.join([str(v) for v in row]) + '\n') progress.done()
def execute(): import math, os, shutil from mrtrix3 import app, image, path, run # Get b-values and number of volumes per b-value. bvalues = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ] bvolumes = [ int(x) for x in image.headerField('dwi.mif', 'shellcounts').split() ] app.console(str(len(bvalues)) + ' unique b-value(s) detected: ' + ','.join(map(str,bvalues)) + ' with ' + ','.join(map(str,bvolumes)) + ' volumes.') if len(bvalues) < 2: app.error('Need at least 2 unique b-values (including b=0).') # Get lmax information (if provided). sfwm_lmax = [ ] if app.args.lmax: sfwm_lmax = [ int(x.strip()) for x in app.args.lmax.split(',') ] if not len(sfwm_lmax) == len(bvalues): app.error('Number of lmax\'s (' + str(len(sfwm_lmax)) + ', as supplied to the -lmax option: ' + ','.join(map(str,sfwm_lmax)) + ') does not match number of unique b-values.') for l in sfwm_lmax: if l%2: app.error('Values supplied to the -lmax option must be even.') if l<0: app.error('Values supplied to the -lmax option must be non-negative.') # Erode (brain) mask. if app.args.erode > 0: run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' + str(app.args.erode)) else: run.command('mrconvert mask.mif eroded_mask.mif -datatype bit') # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values. totvolumes = 0 fullsdmcmd = 'mrcalc' errcmd = 'mrcalc' zeropath = 'mean_b' + str(bvalues[0]) + '.mif' for i, b in enumerate(bvalues): meanpath = 'mean_b' + str(b) + '.mif' run.command('dwiextract dwi.mif -shell ' + str(b) + ' - | mrmath - mean ' + meanpath + ' -axis 3') errpath = 'err_b' + str(b) + '.mif' run.command('mrcalc ' + meanpath + ' -finite ' + meanpath + ' 0 -if 0 -le ' + errpath + ' -datatype bit') errcmd += ' ' + errpath if i>0: errcmd += ' -add' sdmpath = 'sdm_b' + str(b) + '.mif' run.command('mrcalc ' + zeropath + ' ' + meanpath + ' -divide -log ' + sdmpath) totvolumes += bvolumes[i] fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[i]) + ' -mult' if i>1: fullsdmcmd += ' -add' fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif' run.command(fullsdmcmd) run.command('mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit') errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit' run.command(errcmd) run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif') # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA. run.command('dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif') run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.args.fa) + ' -gt crude_wm.mif -datatype bit') run.command('mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit') # Crude GM versus CSF separation based on SDM. crudenonwmmedian = image.statistic('safe_sdm.mif', 'median', '_crudenonwm.mif') run.command('mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit') run.command('mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit') # Refine WM: remove high SDM outliers. crudewmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_wm.mif') run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmmedian) + ' -gt _crudewmhigh.mif -datatype bit') run.command('mrcalc _crudewmhigh.mif 0 crude_wm.mif -if _crudewmlow.mif -datatype bit') crudewmQ1 = float(image.statistic('safe_sdm.mif', 'median', '_crudewmlow.mif')) crudewmQ3 = float(image.statistic('safe_sdm.mif', 'median', '_crudewmhigh.mif')) crudewmoutlthresh = crudewmQ3 + (crudewmQ3 - crudewmQ1) run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmoutlthresh) + ' -gt _crudewmoutliers.mif -datatype bit') run.command('mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit') # Refine GM: separate safer GM from partial volumed voxels. crudegmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_gm.mif') run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' + str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit') run.command('mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit') run.command('mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit') run.command('mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit') run.command('mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit') # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels. crudecsfmin = image.statistic('safe_sdm.mif', 'min', 'crude_csf.mif') run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' + str(crudecsfmin) + ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit') run.command('mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) + ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit') # Get final voxels for single-fibre WM response function estimation from WM using 'tournier' algorithm. refwmcount = float(image.statistic('refined_wm.mif', 'count', 'refined_wm.mif')) voxsfwmcount = int(round(refwmcount * app.args.sfwm / 100.0)) app.console('Running \'tournier\' algorithm to select ' + str(voxsfwmcount) + ' single-fibre WM voxels.') cleanopt = '' if not app._cleanup: cleanopt = ' -nocleanup' run.command('dwi2response tournier dwi.mif _respsfwmss.txt -sf_voxels ' + str(voxsfwmcount) + ' -iter_voxels ' + str(voxsfwmcount * 10) + ' -mask refined_wm.mif -voxels voxels_sfwm.mif -tempdir ' + app._tempDir + cleanopt) # Get final voxels for GM response function estimation from GM. refgmmedian = image.statistic('safe_sdm.mif', 'median', 'refined_gm.mif') run.command('mrcalc refined_gm.mif safe_sdm.mif 0 -if ' + str(refgmmedian) + ' -gt _refinedgmhigh.mif -datatype bit') run.command('mrcalc _refinedgmhigh.mif 0 refined_gm.mif -if _refinedgmlow.mif -datatype bit') refgmhighcount = float(image.statistic('_refinedgmhigh.mif', 'count', '_refinedgmhigh.mif')) refgmlowcount = float(image.statistic('_refinedgmlow.mif', 'count', '_refinedgmlow.mif')) voxgmhighcount = int(round(refgmhighcount * app.args.gm / 100.0)) voxgmlowcount = int(round(refgmlowcount * app.args.gm / 100.0)) run.command('mrcalc _refinedgmhigh.mif safe_sdm.mif 0 -if - | mrthreshold - - -bottom ' + str(voxgmhighcount) + ' -ignorezero | mrcalc _refinedgmhigh.mif - 0 -if _refinedgmhighselect.mif -datatype bit') run.command('mrcalc _refinedgmlow.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxgmlowcount) + ' -ignorezero | mrcalc _refinedgmlow.mif - 0 -if _refinedgmlowselect.mif -datatype bit') run.command('mrcalc _refinedgmhighselect.mif 1 _refinedgmlowselect.mif -if voxels_gm.mif -datatype bit') # Get final voxels for CSF response function estimation from CSF. refcsfcount = float(image.statistic('refined_csf.mif', 'count', 'refined_csf.mif')) voxcsfcount = int(round(refcsfcount * app.args.csf / 100.0)) run.command('mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxcsfcount) + ' -ignorezero | mrcalc refined_csf.mif - 0 -if voxels_csf.mif -datatype bit') # Show summary of voxels counts. textarrow = ' --> ' app.console('Summary of voxel counts:') app.console('Mask: ' + str(int(image.statistic('mask.mif', 'count', 'mask.mif'))) + textarrow + str(int(image.statistic('eroded_mask.mif', 'count', 'eroded_mask.mif'))) + textarrow + str(int(image.statistic('safe_mask.mif', 'count', 'safe_mask.mif')))) app.console('WM: ' + str(int(image.statistic('crude_wm.mif', 'count', 'crude_wm.mif'))) + textarrow + str(int(image.statistic('refined_wm.mif', 'count', 'refined_wm.mif'))) + textarrow + str(int(image.statistic('voxels_sfwm.mif', 'count', 'voxels_sfwm.mif'))) + ' (SF)') app.console('GM: ' + str(int(image.statistic('crude_gm.mif', 'count', 'crude_gm.mif'))) + textarrow + str(int(image.statistic('refined_gm.mif', 'count', 'refined_gm.mif'))) + textarrow + str(int(image.statistic('voxels_gm.mif', 'count', 'voxels_gm.mif')))) app.console('CSF: ' + str(int(image.statistic('crude_csf.mif', 'count', 'crude_csf.mif'))) + textarrow + str(int(image.statistic('refined_csf.mif', 'count', 'refined_csf.mif'))) + textarrow + str(int(image.statistic('voxels_csf.mif', 'count', 'voxels_csf.mif')))) # Generate single-fibre WM, GM and CSF responses bvalues_option = ' -shell ' + ','.join(map(str,bvalues)) sfwm_lmax_option = '' if sfwm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str,sfwm_lmax)) run.command('amp2response dwi.mif voxels_sfwm.mif safe_vecs.mif response_sfwm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'response_sfwm.txt', path.fromUser(app.args.out_sfwm, False)) run.function(shutil.copyfile, 'response_gm.txt', path.fromUser(app.args.out_gm, False)) run.function(shutil.copyfile, 'response_csf.txt', path.fromUser(app.args.out_csf, False)) # Generate 4D binary images with voxel selections at major stages in algorithm (RGB as in MSMT-CSD paper). run.command('mrcat crude_csf.mif crude_gm.mif crude_wm.mif crude.mif -axis 3') run.command('mrcat refined_csf.mif refined_gm.mif refined_wm.mif refined.mif -axis 3') run.command('mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif voxels.mif -axis 3')
def execute(): import math, os, shutil from mrtrix3 import app, file, image, path, run lmax_option = '' if app.args.lmax: lmax_option = ' -lmax ' + app.args.lmax convergence_change = 0.01 * app.args.convergence for iteration in range(0, app.args.max_iters): prefix = 'iter' + str(iteration) + '_' # How to initialise response function? # old dwi2response command used mean & standard deviation of DWI data; however # this may force the output FODs to lmax=2 at the first iteration # Chantal used a tensor with low FA, but it'd be preferable to get the scaling right # Other option is to do as before, but get the ratio between l=0 and l=2, and # generate l=4,6,... using that amplitude ratio if iteration == 0: RF_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' # TODO This can be changed once #71 is implemented (mrstats statistics across volumes) volume_means = [float(x) for x in image.statistic('dwi.mif', 'mean', 'mask.mif').split()] mean = sum(volume_means) / float(len(volume_means)) volume_stds = [float(x) for x in image.statistic('dwi.mif', 'std', 'mask.mif').split()] std = sum(volume_stds) / float(len(volume_stds)) # Scale these to reflect the fact that we're moving to the SH basis mean *= math.sqrt(4.0 * math.pi) std *= math.sqrt(4.0 * math.pi) # Now produce the initial response function # Let's only do it to lmax 4 init_RF = [ str(mean), str(-0.5*std), str(0.25*std*std/mean) ] with open('init_RF.txt', 'w') as f: f.write(' '.join(init_RF)) else: RF_in_path = 'iter' + str(iteration-1) + '_RF.txt' mask_in_path = 'iter' + str(iteration-1) + '_SF.mif' # Run CSD run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and directions of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') file.delTempFile(prefix + 'FOD.mif') run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') file.delTempFile(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif') file.delTempFolder(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') file.delTempFile(prefix + 'all_dirs.mif') # Revise single-fibre voxel selection based on ratio of tallest to second-tallest peak run.command('mrcalc ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div ' + prefix + 'peak_ratio.mif') file.delTempFile(prefix + 'first_peaks.mif') file.delTempFile(prefix + 'second_peaks.mif') run.command('mrcalc ' + prefix + 'peak_ratio.mif ' + str(app.args.peak_ratio) + ' -lt ' + mask_in_path + ' -mult ' + prefix + 'SF.mif -datatype bit') file.delTempFile(prefix + 'peak_ratio.mif') # Make sure image isn't empty SF_voxel_count = int(image.statistic(prefix + 'SF.mif', 'count', prefix + 'SF.mif')) if not SF_voxel_count: app.error('Aborting: All voxels have been excluded from single-fibre selection') # Generate a new response function run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + lmax_option) file.delTempFile(prefix + 'first_dir.mif') # Detect convergence # Look for a change > some percentage - don't bother looking at the masks if iteration > 0: with open(RF_in_path, 'r') as old_RF_file: old_RF = [ float(x) for x in old_RF_file.read().split() ] with open(prefix + 'RF.txt', 'r') as new_RF_file: new_RF = [ float(x) for x in new_RF_file.read().split() ] reiterate = False for index in range(0, len(old_RF)): mean = 0.5 * (old_RF[index] + new_RF[index]) diff = math.fabs(0.5 * (old_RF[index] - new_RF[index])) ratio = diff / mean if ratio > convergence_change: reiterate = True if not reiterate: app.console('Exiting at iteration ' + str(iteration) + ' with ' + str(SF_voxel_count) + ' SF voxels due to unchanged response function coefficients') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.copyfile, prefix + 'SF.mif', 'voxels.mif') break file.delTempFile(RF_in_path) file.delTempFile(mask_in_path) # Go to the next iteration # If we've terminated due to hitting the iteration limiter, we still need to copy the output file(s) to the correct location if not os.path.exists('response.txt'): app.console('Exiting after maximum ' + str(app.args.max_iters-1) + ' iterations with ' + str(SF_voxel_count) + ' SF voxels') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_RF.txt', 'response.txt') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
def execute(): import math, os, shutil from mrtrix3 import app, image, path, run # Get b-values and number of volumes per b-value. bvalues = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ] bvolumes = [ int(x) for x in image.headerField('dwi.mif', 'shellcounts').split() ] app.console( str(len(bvalues)) + ' unique b-value(s) detected: ' + ','.join(map(str, bvalues)) + ' with ' + ','.join(map(str, bvolumes)) + ' volumes.') if len(bvalues) < 2: app.error('Need at least 2 unique b-values (including b=0).') # Get lmax information (if provided). sfwm_lmax = [] if app.args.lmax: sfwm_lmax = [int(x.strip()) for x in app.args.lmax.split(',')] if not len(sfwm_lmax) == len(bvalues): app.error('Number of lmax\'s (' + str(len(sfwm_lmax)) + ', as supplied to the -lmax option: ' + ','.join(map(str, sfwm_lmax)) + ') does not match number of unique b-values.') for l in sfwm_lmax: if l % 2: app.error('Values supplied to the -lmax option must be even.') if l < 0: app.error( 'Values supplied to the -lmax option must be non-negative.' ) # Erode (brain) mask. if app.args.erode > 0: run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' + str(app.args.erode)) else: run.command('mrconvert mask.mif eroded_mask.mif -datatype bit') # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values. totvolumes = 0 fullsdmcmd = 'mrcalc' errcmd = 'mrcalc' zeropath = 'mean_b' + str(bvalues[0]) + '.mif' for i, b in enumerate(bvalues): meanpath = 'mean_b' + str(b) + '.mif' run.command('dwiextract dwi.mif -shell ' + str(b) + ' - | mrmath - mean ' + meanpath + ' -axis 3') errpath = 'err_b' + str(b) + '.mif' run.command('mrcalc ' + meanpath + ' -finite ' + meanpath + ' 0 -if 0 -le ' + errpath + ' -datatype bit') errcmd += ' ' + errpath if i > 0: errcmd += ' -add' sdmpath = 'sdm_b' + str(b) + '.mif' run.command('mrcalc ' + zeropath + ' ' + meanpath + ' -divide -log ' + sdmpath) totvolumes += bvolumes[i] fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[i]) + ' -mult' if i > 1: fullsdmcmd += ' -add' fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif' run.command(fullsdmcmd) run.command( 'mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit' ) errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit' run.command(errcmd) run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif') # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA. run.command( 'dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif' ) run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.args.fa) + ' -gt crude_wm.mif -datatype bit') run.command( 'mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit' ) # Crude GM versus CSF separation based on SDM. crudenonwmmedian = image.statistic('safe_sdm.mif', 'median', '_crudenonwm.mif') run.command( 'mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit' ) run.command( 'mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit' ) # Refine WM: remove high SDM outliers. crudewmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_wm.mif') run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmmedian) + ' -gt _crudewmhigh.mif -datatype bit') run.command( 'mrcalc _crudewmhigh.mif 0 crude_wm.mif -if _crudewmlow.mif -datatype bit' ) crudewmQ1 = float( image.statistic('safe_sdm.mif', 'median', '_crudewmlow.mif')) crudewmQ3 = float( image.statistic('safe_sdm.mif', 'median', '_crudewmhigh.mif')) crudewmoutlthresh = crudewmQ3 + (crudewmQ3 - crudewmQ1) run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmoutlthresh) + ' -gt _crudewmoutliers.mif -datatype bit') run.command( 'mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit' ) # Refine GM: separate safer GM from partial volumed voxels. crudegmmedian = image.statistic('safe_sdm.mif', 'median', 'crude_gm.mif') run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' + str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit') run.command( 'mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit' ) run.command( 'mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit' ) run.command( 'mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit' ) run.command( 'mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit' ) # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels. crudecsfmin = image.statistic('safe_sdm.mif', 'min', 'crude_csf.mif') run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' + str(crudecsfmin) + ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit') run.command( 'mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) + ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit' ) # Get final voxels for single-fibre WM response function estimation from WM using 'tournier' algorithm. refwmcount = float( image.statistic('refined_wm.mif', 'count', 'refined_wm.mif')) voxsfwmcount = int(round(refwmcount * app.args.sfwm / 100.0)) app.console('Running \'tournier\' algorithm to select ' + str(voxsfwmcount) + ' single-fibre WM voxels.') cleanopt = '' if not app._cleanup: cleanopt = ' -nocleanup' run.command('dwi2response tournier dwi.mif _respsfwmss.txt -sf_voxels ' + str(voxsfwmcount) + ' -iter_voxels ' + str(voxsfwmcount * 10) + ' -mask refined_wm.mif -voxels voxels_sfwm.mif -tempdir ' + app._tempDir + cleanopt) # Get final voxels for GM response function estimation from GM. refgmmedian = image.statistic('safe_sdm.mif', 'median', 'refined_gm.mif') run.command('mrcalc refined_gm.mif safe_sdm.mif 0 -if ' + str(refgmmedian) + ' -gt _refinedgmhigh.mif -datatype bit') run.command( 'mrcalc _refinedgmhigh.mif 0 refined_gm.mif -if _refinedgmlow.mif -datatype bit' ) refgmhighcount = float( image.statistic('_refinedgmhigh.mif', 'count', '_refinedgmhigh.mif')) refgmlowcount = float( image.statistic('_refinedgmlow.mif', 'count', '_refinedgmlow.mif')) voxgmhighcount = int(round(refgmhighcount * app.args.gm / 100.0)) voxgmlowcount = int(round(refgmlowcount * app.args.gm / 100.0)) run.command( 'mrcalc _refinedgmhigh.mif safe_sdm.mif 0 -if - | mrthreshold - - -bottom ' + str(voxgmhighcount) + ' -ignorezero | mrcalc _refinedgmhigh.mif - 0 -if _refinedgmhighselect.mif -datatype bit' ) run.command( 'mrcalc _refinedgmlow.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxgmlowcount) + ' -ignorezero | mrcalc _refinedgmlow.mif - 0 -if _refinedgmlowselect.mif -datatype bit' ) run.command( 'mrcalc _refinedgmhighselect.mif 1 _refinedgmlowselect.mif -if voxels_gm.mif -datatype bit' ) # Get final voxels for CSF response function estimation from CSF. refcsfcount = float( image.statistic('refined_csf.mif', 'count', 'refined_csf.mif')) voxcsfcount = int(round(refcsfcount * app.args.csf / 100.0)) run.command( 'mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxcsfcount) + ' -ignorezero | mrcalc refined_csf.mif - 0 -if voxels_csf.mif -datatype bit' ) # Show summary of voxels counts. textarrow = ' --> ' app.console('Summary of voxel counts:') app.console( 'Mask: ' + str(int(image.statistic('mask.mif', 'count', 'mask.mif'))) + textarrow + str(int(image.statistic('eroded_mask.mif', 'count', 'eroded_mask.mif'))) + textarrow + str(int(image.statistic('safe_mask.mif', 'count', 'safe_mask.mif')))) app.console( 'WM: ' + str(int(image.statistic('crude_wm.mif', 'count', 'crude_wm.mif'))) + textarrow + str(int(image.statistic('refined_wm.mif', 'count', 'refined_wm.mif'))) + textarrow + str(int(image.statistic('voxels_sfwm.mif', 'count', 'voxels_sfwm.mif'))) + ' (SF)') app.console( 'GM: ' + str(int(image.statistic('crude_gm.mif', 'count', 'crude_gm.mif'))) + textarrow + str(int(image.statistic('refined_gm.mif', 'count', 'refined_gm.mif'))) + textarrow + str(int(image.statistic('voxels_gm.mif', 'count', 'voxels_gm.mif')))) app.console( 'CSF: ' + str(int(image.statistic('crude_csf.mif', 'count', 'crude_csf.mif'))) + textarrow + str(int(image.statistic('refined_csf.mif', 'count', 'refined_csf.mif'))) + textarrow + str(int(image.statistic('voxels_csf.mif', 'count', 'voxels_csf.mif')))) # Generate single-fibre WM, GM and CSF responses bvalues_option = ' -shell ' + ','.join(map(str, bvalues)) sfwm_lmax_option = '' if sfwm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str, sfwm_lmax)) run.command( 'amp2response dwi.mif voxels_sfwm.mif safe_vecs.mif response_sfwm.txt' + bvalues_option + sfwm_lmax_option) run.command( 'amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' + bvalues_option + ' -isotropic') run.command( 'amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'response_sfwm.txt', path.fromUser(app.args.out_sfwm, False)) run.function(shutil.copyfile, 'response_gm.txt', path.fromUser(app.args.out_gm, False)) run.function(shutil.copyfile, 'response_csf.txt', path.fromUser(app.args.out_csf, False)) # Generate 4D binary images with voxel selections at major stages in algorithm (RGB as in MSMT-CSD paper). run.command( 'mrcat crude_csf.mif crude_gm.mif crude_wm.mif crude.mif -axis 3') run.command( 'mrcat refined_csf.mif refined_gm.mif refined_wm.mif refined.mif -axis 3' ) run.command( 'mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif voxels.mif -axis 3' )
def execute(): #pylint: disable=unused-variable import math from mrtrix3 import CONFIG, app, image, matrix, MRtrixError, path, run bzero_threshold = float( CONFIG['BZeroThreshold']) if 'BZeroThreshold' in CONFIG else 10.0 # CHECK INPUTS AND OPTIONS app.console('-------') # Get b-values and number of volumes per b-value. bvalues = [ int(round(float(x))) for x in image.mrinfo('dwi.mif', 'shell_bvalues').split() ] bvolumes = [int(x) for x in image.mrinfo('dwi.mif', 'shell_sizes').split()] app.console( str(len(bvalues)) + ' unique b-value(s) detected: ' + ','.join(map(str, bvalues)) + ' with ' + ','.join(map(str, bvolumes)) + ' volumes') if len(bvalues) < 2: raise MRtrixError('Need at least 2 unique b-values (including b=0).') bvalues_option = ' -shells ' + ','.join(map(str, bvalues)) # Get lmax information (if provided). sfwm_lmax = [] if app.ARGS.lmax: sfwm_lmax = [int(x.strip()) for x in app.ARGS.lmax.split(',')] if not len(sfwm_lmax) == len(bvalues): raise MRtrixError('Number of lmax\'s (' + str(len(sfwm_lmax)) + ', as supplied to the -lmax option: ' + ','.join(map(str, sfwm_lmax)) + ') does not match number of unique b-values.') for sfl in sfwm_lmax: if sfl % 2: raise MRtrixError( 'Values supplied to the -lmax option must be even.') if sfl < 0: raise MRtrixError( 'Values supplied to the -lmax option must be non-negative.' ) sfwm_lmax_option = '' if sfwm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str, sfwm_lmax)) # PREPARATION app.console('-------') app.console('Preparation:') # Erode (brain) mask. if app.ARGS.erode > 0: app.console('* Eroding brain mask by ' + str(app.ARGS.erode) + ' pass(es)...') run.command('maskfilter mask.mif erode eroded_mask.mif -npass ' + str(app.ARGS.erode), show=False) else: app.console('Not eroding brain mask.') run.command('mrconvert mask.mif eroded_mask.mif -datatype bit', show=False) statmaskcount = image.statistic('mask.mif', 'count', '-mask mask.mif') statemaskcount = image.statistic('eroded_mask.mif', 'count', '-mask eroded_mask.mif') app.console(' [ mask: ' + str(statmaskcount) + ' -> ' + str(statemaskcount) + ' ]') # Get volumes, compute mean signal and SDM per b-value; compute overall SDM; get rid of erroneous values. app.console('* Computing signal decay metric (SDM):') totvolumes = 0 fullsdmcmd = 'mrcalc' errcmd = 'mrcalc' zeropath = 'mean_b' + str(bvalues[0]) + '.mif' for ibv, bval in enumerate(bvalues): app.console(' * b=' + str(bval) + '...') meanpath = 'mean_b' + str(bval) + '.mif' run.command('dwiextract dwi.mif -shells ' + str(bval) + ' - | mrmath - mean ' + meanpath + ' -axis 3', show=False) errpath = 'err_b' + str(bval) + '.mif' run.command('mrcalc ' + meanpath + ' -finite ' + meanpath + ' 0 -if 0 -le ' + errpath + ' -datatype bit', show=False) errcmd += ' ' + errpath if ibv > 0: errcmd += ' -add' sdmpath = 'sdm_b' + str(bval) + '.mif' run.command('mrcalc ' + zeropath + ' ' + meanpath + ' -divide -log ' + sdmpath, show=False) totvolumes += bvolumes[ibv] fullsdmcmd += ' ' + sdmpath + ' ' + str(bvolumes[ibv]) + ' -mult' if ibv > 1: fullsdmcmd += ' -add' fullsdmcmd += ' ' + str(totvolumes) + ' -divide full_sdm.mif' run.command(fullsdmcmd, show=False) app.console('* Removing erroneous voxels from mask and correcting SDM...') run.command( 'mrcalc full_sdm.mif -finite full_sdm.mif 0 -if 0 -le err_sdm.mif -datatype bit', show=False) errcmd += ' err_sdm.mif -add 0 eroded_mask.mif -if safe_mask.mif -datatype bit' run.command(errcmd, show=False) run.command('mrcalc safe_mask.mif full_sdm.mif 0 -if 10 -min safe_sdm.mif', show=False) statsmaskcount = image.statistic('safe_mask.mif', 'count', '-mask safe_mask.mif') app.console(' [ mask: ' + str(statemaskcount) + ' -> ' + str(statsmaskcount) + ' ]') # CRUDE SEGMENTATION app.console('-------') app.console('Crude segmentation:') # Compute FA and principal eigenvectors; crude WM versus GM-CSF separation based on FA. app.console('* Crude WM versus GM-CSF separation (at FA=' + str(app.ARGS.fa) + ')...') run.command( 'dwi2tensor dwi.mif - -mask safe_mask.mif | tensor2metric - -fa safe_fa.mif -vector safe_vecs.mif -modulate none -mask safe_mask.mif', show=False) run.command('mrcalc safe_mask.mif safe_fa.mif 0 -if ' + str(app.ARGS.fa) + ' -gt crude_wm.mif -datatype bit', show=False) run.command( 'mrcalc crude_wm.mif 0 safe_mask.mif -if _crudenonwm.mif -datatype bit', show=False) statcrudewmcount = image.statistic('crude_wm.mif', 'count', '-mask crude_wm.mif') statcrudenonwmcount = image.statistic('_crudenonwm.mif', 'count', '-mask _crudenonwm.mif') app.console(' [ ' + str(statsmaskcount) + ' -> ' + str(statcrudewmcount) + ' (WM) & ' + str(statcrudenonwmcount) + ' (GM-CSF) ]') # Crude GM versus CSF separation based on SDM. app.console('* Crude GM versus CSF separation...') crudenonwmmedian = image.statistic('safe_sdm.mif', 'median', '-mask _crudenonwm.mif') run.command( 'mrcalc _crudenonwm.mif safe_sdm.mif ' + str(crudenonwmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudenonwm.mif | mrcalc _crudenonwm.mif - 0 -if crude_csf.mif -datatype bit', show=False) run.command( 'mrcalc crude_csf.mif 0 _crudenonwm.mif -if crude_gm.mif -datatype bit', show=False) statcrudegmcount = image.statistic('crude_gm.mif', 'count', '-mask crude_gm.mif') statcrudecsfcount = image.statistic('crude_csf.mif', 'count', '-mask crude_csf.mif') app.console(' [ ' + str(statcrudenonwmcount) + ' -> ' + str(statcrudegmcount) + ' (GM) & ' + str(statcrudecsfcount) + ' (CSF) ]') # REFINED SEGMENTATION app.console('-------') app.console('Refined segmentation:') # Refine WM: remove high SDM outliers. app.console('* Refining WM...') crudewmmedian = image.statistic('safe_sdm.mif', 'median', '-mask crude_wm.mif') run.command('mrcalc crude_wm.mif safe_sdm.mif ' + str(crudewmmedian) + ' -subtract -abs 0 -if _crudewm_sdmad.mif', show=False) crudewmmad = image.statistic('_crudewm_sdmad.mif', 'median', '-mask crude_wm.mif') crudewmoutlthresh = crudewmmedian + (1.4826 * crudewmmad * 2.0) run.command('mrcalc crude_wm.mif safe_sdm.mif 0 -if ' + str(crudewmoutlthresh) + ' -gt _crudewmoutliers.mif -datatype bit', show=False) run.command( 'mrcalc _crudewmoutliers.mif 0 crude_wm.mif -if refined_wm.mif -datatype bit', show=False) statrefwmcount = image.statistic('refined_wm.mif', 'count', '-mask refined_wm.mif') app.console(' [ WM: ' + str(statcrudewmcount) + ' -> ' + str(statrefwmcount) + ' ]') # Refine GM: separate safer GM from partial volumed voxels. app.console('* Refining GM...') crudegmmedian = image.statistic('safe_sdm.mif', 'median', '-mask crude_gm.mif') run.command('mrcalc crude_gm.mif safe_sdm.mif 0 -if ' + str(crudegmmedian) + ' -gt _crudegmhigh.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhigh.mif 0 crude_gm.mif -if _crudegmlow.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhigh.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract 0 -if - | mrthreshold - - -mask _crudegmhigh.mif -invert | mrcalc _crudegmhigh.mif - 0 -if _crudegmhighselect.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmlow.mif safe_sdm.mif ' + str(crudegmmedian) + ' -subtract -neg 0 -if - | mrthreshold - - -mask _crudegmlow.mif -invert | mrcalc _crudegmlow.mif - 0 -if _crudegmlowselect.mif -datatype bit', show=False) run.command( 'mrcalc _crudegmhighselect.mif 1 _crudegmlowselect.mif -if refined_gm.mif -datatype bit', show=False) statrefgmcount = image.statistic('refined_gm.mif', 'count', '-mask refined_gm.mif') app.console(' [ GM: ' + str(statcrudegmcount) + ' -> ' + str(statrefgmcount) + ' ]') # Refine CSF: recover lost CSF from crude WM SDM outliers, separate safer CSF from partial volumed voxels. app.console('* Refining CSF...') crudecsfmin = image.statistic('safe_sdm.mif', 'min', '-mask crude_csf.mif') run.command('mrcalc _crudewmoutliers.mif safe_sdm.mif 0 -if ' + str(crudecsfmin) + ' -gt 1 crude_csf.mif -if _crudecsfextra.mif -datatype bit', show=False) run.command( 'mrcalc _crudecsfextra.mif safe_sdm.mif ' + str(crudecsfmin) + ' -subtract 0 -if - | mrthreshold - - -mask _crudecsfextra.mif | mrcalc _crudecsfextra.mif - 0 -if refined_csf.mif -datatype bit', show=False) statrefcsfcount = image.statistic('refined_csf.mif', 'count', '-mask refined_csf.mif') app.console(' [ CSF: ' + str(statcrudecsfcount) + ' -> ' + str(statrefcsfcount) + ' ]') # FINAL VOXEL SELECTION AND RESPONSE FUNCTION ESTIMATION app.console('-------') app.console('Final voxel selection and response function estimation:') # Get final voxels for CSF response function estimation from refined CSF. app.console('* CSF:') app.console(' * Selecting final voxels (' + str(app.ARGS.csf) + '% of refined CSF)...') voxcsfcount = int(round(statrefcsfcount * app.ARGS.csf / 100.0)) run.command( 'mrcalc refined_csf.mif safe_sdm.mif 0 -if - | mrthreshold - - -top ' + str(voxcsfcount) + ' -ignorezero | mrcalc refined_csf.mif - 0 -if - -datatype bit | mrconvert - voxels_csf.mif -axes 0,1,2', show=False) statvoxcsfcount = image.statistic('voxels_csf.mif', 'count', '-mask voxels_csf.mif') app.console(' [ CSF: ' + str(statrefcsfcount) + ' -> ' + str(statvoxcsfcount) + ' ]') # Estimate CSF response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_csf.mif safe_vecs.mif response_csf.txt' + bvalues_option + ' -isotropic', show=False) # Get final voxels for GM response function estimation from refined GM. app.console('* GM:') app.console(' * Selecting final voxels (' + str(app.ARGS.gm) + '% of refined GM)...') voxgmcount = int(round(statrefgmcount * app.ARGS.gm / 100.0)) refgmmedian = image.statistic('safe_sdm.mif', 'median', '-mask refined_gm.mif') run.command( 'mrcalc refined_gm.mif safe_sdm.mif ' + str(refgmmedian) + ' -subtract -abs 1 -add 0 -if - | mrthreshold - - -bottom ' + str(voxgmcount) + ' -ignorezero | mrcalc refined_gm.mif - 0 -if - -datatype bit | mrconvert - voxels_gm.mif -axes 0,1,2', show=False) statvoxgmcount = image.statistic('voxels_gm.mif', 'count', '-mask voxels_gm.mif') app.console(' [ GM: ' + str(statrefgmcount) + ' -> ' + str(statvoxgmcount) + ' ]') # Estimate GM response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_gm.mif safe_vecs.mif response_gm.txt' + bvalues_option + ' -isotropic', show=False) # Get final voxels for single-fibre WM response function estimation from refined WM. app.console('* single-fibre WM:') app.console(' * Selecting final voxels (' + str(app.ARGS.sfwm) + '% of refined WM)...') voxsfwmcount = int(round(statrefwmcount * app.ARGS.sfwm / 100.0)) run.command('mrmath dwi.mif mean mean_sig.mif -axis 3', show=False) refwmcoef = image.statistic('mean_sig.mif', 'median', '-mask refined_wm.mif') * math.sqrt( 4.0 * math.pi) if sfwm_lmax: isiso = [lm == 0 for lm in sfwm_lmax] else: isiso = [bv < bzero_threshold for bv in bvalues] with open('ewmrf.txt', 'w') as ewr: for iis in isiso: if iis: ewr.write("%s 0 0 0\n" % refwmcoef) else: ewr.write("%s -%s %s -%s\n" % (refwmcoef, refwmcoef, refwmcoef, refwmcoef)) run.command( 'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm2.mif response_csf.txt abs_csf2.mif -mask refined_wm.mif -lmax 2,0' + bvalues_option, show=False) run.command( 'mrconvert abs_ewm2.mif - -coord 3 0 | mrcalc - abs_csf2.mif -add abs_sum2.mif', show=False) run.command( 'sh2peaks abs_ewm2.mif - -num 1 -mask refined_wm.mif | peaks2amp - - | mrcalc - abs_sum2.mif -divide - | mrconvert - metric_sfwm2.mif -coord 3 0 -axes 0,1,2', show=False) run.command( 'mrcalc refined_wm.mif metric_sfwm2.mif 0 -if - | mrthreshold - - -top ' + str(voxsfwmcount * 2) + ' -ignorezero | mrcalc refined_wm.mif - 0 -if - -datatype bit | mrconvert - refined_sfwm.mif -axes 0,1,2', show=False) run.command( 'dwi2fod msmt_csd dwi.mif ewmrf.txt abs_ewm6.mif response_csf.txt abs_csf6.mif -mask refined_sfwm.mif -lmax 6,0' + bvalues_option, show=False) run.command( 'mrconvert abs_ewm6.mif - -coord 3 0 | mrcalc - abs_csf6.mif -add abs_sum6.mif', show=False) run.command( 'sh2peaks abs_ewm6.mif abs_peak_ewm6.mif -num 1 -mask refined_sfwm.mif', show=False) run.command( 'peaks2amp abs_peak_ewm6.mif - | mrcalc - abs_sum6.mif -divide - | mrconvert - metric_sfwm6.mif -coord 3 0 -axes 0,1,2', show=False) run.command( 'mrcalc refined_sfwm.mif metric_sfwm6.mif 0 -if - | mrthreshold - - -top ' + str(voxsfwmcount) + ' -ignorezero | mrcalc refined_sfwm.mif - 0 -if - -datatype bit | mrconvert - voxels_sfwm.mif -axes 0,1,2', show=False) statvoxsfwmcount = image.statistic('voxels_sfwm.mif', 'count', '-mask voxels_sfwm.mif') app.console(' [ WM: ' + str(statrefwmcount) + ' -> ' + str(statvoxsfwmcount) + ' (single-fibre) ]') # Estimate SF WM response function app.console(' * Estimating response function...') run.command( 'amp2response dwi.mif voxels_sfwm.mif abs_peak_ewm6.mif response_sfwm.txt' + bvalues_option + sfwm_lmax_option, show=False) # OUTPUT AND SUMMARY app.console('-------') app.console('Generating outputs...') # Generate 4D binary images with voxel selections at major stages in algorithm (RGB: WM=blue, GM=green, CSF=red). run.command( 'mrcat crude_csf.mif crude_gm.mif crude_wm.mif check_crude.mif -axis 3', show=False) run.command( 'mrcat refined_csf.mif refined_gm.mif refined_wm.mif check_refined.mif -axis 3', show=False) run.command( 'mrcat voxels_csf.mif voxels_gm.mif voxels_sfwm.mif check_voxels.mif -axis 3', show=False) # Save results to output files bvalhdr = {'b-values': ','.join(map(str, bvalues))} matrix.save_matrix(path.from_user(app.ARGS.out_sfwm, False), matrix.load_matrix('response_sfwm.txt'), header=bvalhdr, fmt='%.15g', footer={}) matrix.save_matrix(path.from_user(app.ARGS.out_gm, False), matrix.load_matrix('response_gm.txt'), header=bvalhdr, fmt='%.15g', footer={}) matrix.save_matrix(path.from_user(app.ARGS.out_csf, False), matrix.load_matrix('response_csf.txt'), header=bvalhdr, fmt='%.15g', footer={}) if app.ARGS.voxels: run.command('mrconvert check_voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input), force=app.FORCE_OVERWRITE, show=False) app.console('-------')
def execute(): #pylint: disable=unused-variable import os, shutil from mrtrix3 import app, image, MRtrixError, path, run # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform # May need to commit 5ttregrid... # Verify input 5tt image stderr_5ttcheck = run.command('5ttcheck 5tt.mif').stderr if '[WARNING]' in stderr_5ttcheck: app.warn( 'Command 5ttcheck indicates minor problems with provided input 5TT image \'' + app.ARGS.in_5tt + '\':') for line in stderr_5ttcheck.splitlines(): app.warn(line) app.warn( 'These may or may not interfere with the dwi2response msmt_5tt script' ) # Get shell information shells = [ int(round(float(x))) for x in image.mrinfo('dwi.mif', 'shell_bvalues').split() ] if len(shells) < 3: app.warn( 'Less than three b-values; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm' ) # Get lmax information (if provided) wm_lmax = [] if app.ARGS.lmax: wm_lmax = [int(x.strip()) for x in app.ARGS.lmax.split(',')] if not len(wm_lmax) == len(shells): raise MRtrixError('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-values (' + str(len(shells)) + ')') for shell_l in wm_lmax: if shell_l % 2: raise MRtrixError('Values for lmax must be even') if shell_l < 0: raise MRtrixError('Values for lmax must be non-negative') run.command( 'dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif' ) if not os.path.exists('dirs.mif'): run.function(shutil.copy, 'vector.mif', 'dirs.mif') run.command( 'mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear') # Basic tissue masks run.command( 'mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt mask.mif -mult wm_mask.mif') run.command( 'mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult gm_mask.mif') run.command( 'mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.ARGS.pvf) + ' -gt fa.mif ' + str(app.ARGS.fa) + ' -lt -mult mask.mif -mult csf_mask.mif') # Revise WM mask to only include single-fibre voxels recursive_cleanup_option = '' if not app.DO_CLEANUP: recursive_cleanup_option = ' -nocleanup' if not app.ARGS.sfwm_fa_threshold: app.console('Selecting WM single-fibre voxels using \'' + app.ARGS.wm_algo + '\' algorithm') run.command( 'dwi2response ' + app.ARGS.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option) else: app.console( 'Selecting WM single-fibre voxels using \'fa\' algorithm with a hard FA threshold of ' + str(app.ARGS.sfwm_fa_threshold)) run.command( 'dwi2response fa dwi.mif wm_ss_response.txt -mask wm_mask.mif -threshold ' + str(app.ARGS.sfwm_fa_threshold) + ' -voxels wm_sf_mask.mif -scratch ' + path.quote(app.SCRATCH_DIR) + recursive_cleanup_option) # Check for empty masks wm_voxels = image.statistic('wm_sf_mask.mif', 'count', '-mask wm_sf_mask.mif') gm_voxels = image.statistic('gm_mask.mif', 'count', '-mask gm_mask.mif') csf_voxels = image.statistic('csf_mask.mif', 'count', '-mask csf_mask.mif') empty_masks = [] if not wm_voxels: empty_masks.append('WM') if not gm_voxels: empty_masks.append('GM') if not csf_voxels: empty_masks.append('CSF') if empty_masks: message = ','.join(empty_masks) message += ' tissue mask' if len(empty_masks) > 1: message += 's' message += ' empty; cannot estimate response function' if len(empty_masks) > 1: message += 's' raise MRtrixError(message) # For each of the three tissues, generate a multi-shell response bvalues_option = ' -shells ' + ','.join(map(str, shells)) sfwm_lmax_option = '' if wm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str, wm_lmax)) run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'wm.txt', path.from_user(app.ARGS.out_wm, False)) run.function(shutil.copyfile, 'gm.txt', path.from_user(app.ARGS.out_gm, False)) run.function(shutil.copyfile, 'csf.txt', path.from_user(app.ARGS.out_csf, False)) # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper run.command( 'mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3') if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input), force=app.FORCE_OVERWRITE)
def execute(): import math, os, shutil from mrtrix3 import app, image, path, run # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform # May need to commit 5ttregrid... # Verify input 5tt image run.command('5ttcheck 5tt.mif', False) # Get shell information shells = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ] if len(shells) < 3: app.warn( 'Less than three b-value shells; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm' ) # Get lmax information (if provided) wm_lmax = [] if app.args.lmax: wm_lmax = [int(x.strip()) for x in app.args.lmax.split(',')] if not len(wm_lmax) == len(shells): app.error('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-value shells (' + str(len(shells)) + ')') for l in wm_lmax: if l % 2: app.error('Values for lmax must be even') if l < 0: app.error('Values for lmax must be non-negative') run.command( 'dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif' ) if not os.path.exists('dirs.mif'): run.function(shutil.copy, 'vector.mif', 'dirs.mif') run.command( 'mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear') # Basic tissue masks run.command( 'mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt mask.mif -mult wm_mask.mif') run.command( 'mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult gm_mask.mif') run.command( 'mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult csf_mask.mif') # Revise WM mask to only include single-fibre voxels app.console( 'Calling dwi2response recursively to select WM single-fibre voxels using \'' + app.args.wm_algo + '\' algorithm') recursive_cleanup_option = '' if not app._cleanup: recursive_cleanup_option = ' -nocleanup' run.command( 'dwi2response ' + app.args.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -tempdir ' + app._tempDir + recursive_cleanup_option) # Check for empty masks wm_voxels = int( image.statistic('wm_sf_mask.mif', 'count', 'wm_sf_mask.mif')) gm_voxels = int(image.statistic('gm_mask.mif', 'count', 'gm_mask.mif')) csf_voxels = int(image.statistic('csf_mask.mif', 'count', 'csf_mask.mif')) empty_masks = [] if not wm_voxels: empty_masks.append('WM') if not gm_voxels: empty_masks.append('GM') if not csf_voxels: empty_masks.append('CSF') if empty_masks: message = ','.join(empty_masks) message += ' tissue mask' if len(empty_masks) > 1: message += 's' message += ' empty; cannot estimate response function' if len(empty_masks) > 1: message += 's' app.error(message) # For each of the three tissues, generate a multi-shell response bvalues_option = ' -shell ' + ','.join(map(str, shells)) sfwm_lmax_option = '' if wm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str, wm_lmax)) run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'wm.txt', path.fromUser(app.args.out_wm, False)) run.function(shutil.copyfile, 'gm.txt', path.fromUser(app.args.out_gm, False)) run.function(shutil.copyfile, 'csf.txt', path.fromUser(app.args.out_csf, False)) # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper run.command( 'mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3')
def execute(): #pylint: disable=unused-variable import os, shutil from mrtrix3 import app, image, matrix, MRtrixError, path, run lmax_option = '' if app.ARGS.lmax: lmax_option = ' -lmax ' + app.ARGS.lmax if app.ARGS.max_iters < 2: raise MRtrixError('Number of iterations must be at least 2') progress = app.ProgressBar('Optimising') iteration = 0 while iteration < app.ARGS.max_iters: prefix = 'iter' + str(iteration) + '_' if iteration == 0: rf_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_rf = '1 -1 1' with open(rf_in_path, 'w') as init_rf_file: init_rf_file.write(init_rf) iter_lmax_option = ' -lmax 4' else: rf_in_path = 'iter' + str(iteration - 1) + '_RF.txt' mask_in_path = 'iter' + str(iteration - 1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + rf_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') app.cleanup(prefix + 'FOD.mif') if iteration: app.cleanup(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') app.cleanup(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif -number 1') app.cleanup(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') app.cleanup(prefix + 'all_dirs.mif') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult ' + prefix + 'CF.mif') app.cleanup(prefix + 'first_peaks.mif') app.cleanup(prefix + 'second_peaks.mif') voxel_count = int(image.statistic(prefix + 'CF.mif', 'count')) # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([app.ARGS.sf_voxels, voxel_count])) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) app.cleanup(prefix + 'first_dir.mif') new_rf = matrix.load_vector(prefix + 'RF.txt') progress.increment('Optimising (' + str(iteration + 1) + ' iterations, RF: [ ' + ', '.join('{:.3f}'.format(n) for n in new_rf) + '] )') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration - 1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') app.cleanup('iter' + str(iteration - 1) + '_SF.mif') max_diff = image.statistic(prefix + 'SF_diff.mif', 'max') app.cleanup(prefix + 'SF_diff.mif') if not max_diff: app.cleanup(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(min([app.ARGS.iter_voxels, voxel_count])) + ' - | maskfilter - dilate - -npass ' + str(app.ARGS.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') app.cleanup(prefix + 'CF.mif') iteration += 1 progress.done() # If terminating due to running out of iterations, still need to put the results in the appropriate location if os.path.exists('response.txt'): app.console( 'Convergence of SF voxel selection detected at iteration ' + str(iteration + 1)) else: app.console('Exiting after maximum ' + str(app.ARGS.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.ARGS.max_iters - 1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.ARGS.max_iters - 1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.from_user(app.ARGS.output, False)) if app.ARGS.voxels: run.command('mrconvert voxels.mif ' + path.from_user(app.ARGS.voxels), mrconvert_keyval=path.from_user(app.ARGS.input), force=app.FORCE_OVERWRITE)
def execute(): #pylint: disable=unused-variable import os, shutil from mrtrix3 import app, file, image, path, run #pylint: disable=redefined-builtin lmax_option = '' if app.args.lmax: lmax_option = ' -lmax ' + app.args.lmax if app.args.max_iters < 2: app.error('Number of iterations must be at least 2') for iteration in range(0, app.args.max_iters): prefix = 'iter' + str(iteration) + '_' if iteration == 0: RF_in_path = 'init_RF.txt' mask_in_path = 'mask.mif' init_RF = '1 -1 1' with open(RF_in_path, 'w') as f: f.write(init_RF) iter_lmax_option = ' -lmax 4' else: RF_in_path = 'iter' + str(iteration-1) + '_RF.txt' mask_in_path = 'iter' + str(iteration-1) + '_SF_dilated.mif' iter_lmax_option = lmax_option # Run CSD run.command('dwi2fod csd dwi.mif ' + RF_in_path + ' ' + prefix + 'FOD.mif -mask ' + mask_in_path + iter_lmax_option) # Get amplitudes of two largest peaks, and direction of largest run.command('fod2fixel ' + prefix + 'FOD.mif ' + prefix + 'fixel -peak peaks.mif -mask ' + mask_in_path + ' -fmls_no_thresholds') file.delTemporary(prefix + 'FOD.mif') if iteration: file.delTemporary(mask_in_path) run.command('fixel2voxel ' + prefix + 'fixel/peaks.mif split_data ' + prefix + 'amps.mif -number 2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'first_peaks.mif -coord 3 0 -axes 0,1,2') run.command('mrconvert ' + prefix + 'amps.mif ' + prefix + 'second_peaks.mif -coord 3 1 -axes 0,1,2') file.delTemporary(prefix + 'amps.mif') run.command('fixel2voxel ' + prefix + 'fixel/directions.mif split_dir ' + prefix + 'all_dirs.mif -number 1') file.delTemporary(prefix + 'fixel') run.command('mrconvert ' + prefix + 'all_dirs.mif ' + prefix + 'first_dir.mif -coord 3 0:2') file.delTemporary(prefix + 'all_dirs.mif') # Calculate the 'cost function' Donald derived for selecting single-fibre voxels # https://github.com/MRtrix3/mrtrix3/pull/426 # sqrt(|peak1|) * (1 - |peak2| / |peak1|)^2 run.command('mrcalc ' + prefix + 'first_peaks.mif -sqrt 1 ' + prefix + 'second_peaks.mif ' + prefix + 'first_peaks.mif -div -sub 2 -pow -mult '+ prefix + 'CF.mif') file.delTemporary(prefix + 'first_peaks.mif') file.delTemporary(prefix + 'second_peaks.mif') # Select the top-ranked voxels run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.sf_voxels) + ' ' + prefix + 'SF.mif') # Generate a new response function based on this selection run.command('amp2response dwi.mif ' + prefix + 'SF.mif ' + prefix + 'first_dir.mif ' + prefix + 'RF.txt' + iter_lmax_option) file.delTemporary(prefix + 'first_dir.mif') # Should we terminate? if iteration > 0: run.command('mrcalc ' + prefix + 'SF.mif iter' + str(iteration-1) + '_SF.mif -sub ' + prefix + 'SF_diff.mif') file.delTemporary('iter' + str(iteration-1) + '_SF.mif') max_diff = image.statistic(prefix + 'SF_diff.mif', 'max') file.delTemporary(prefix + 'SF_diff.mif') if int(max_diff) == 0: app.console('Convergence of SF voxel selection detected at iteration ' + str(iteration)) file.delTemporary(prefix + 'CF.mif') run.function(shutil.copyfile, prefix + 'RF.txt', 'response.txt') run.function(shutil.move, prefix + 'SF.mif', 'voxels.mif') break # Select a greater number of top single-fibre voxels, and dilate (within bounds of initial mask); # these are the voxels that will be re-tested in the next iteration run.command('mrthreshold ' + prefix + 'CF.mif -top ' + str(app.args.iter_voxels) + ' - | maskfilter - dilate - -npass ' + str(app.args.dilate) + ' | mrcalc mask.mif - -mult ' + prefix + 'SF_dilated.mif') file.delTemporary(prefix + 'CF.mif') # Commence the next iteration # If terminating due to running out of iterations, still need to put the results in the appropriate location if not os.path.exists('response.txt'): app.console('Exiting after maximum ' + str(app.args.max_iters) + ' iterations') run.function(shutil.copyfile, 'iter' + str(app.args.max_iters-1) + '_RF.txt', 'response.txt') run.function(shutil.move, 'iter' + str(app.args.max_iters-1) + '_SF.mif', 'voxels.mif') run.function(shutil.copyfile, 'response.txt', path.fromUser(app.args.output, False))
def execute(): import math, os, shutil from mrtrix3 import app, image, path, run # Ideally want to use the oversampling-based regridding of the 5TT image from the SIFT model, not mrtransform # May need to commit 5ttregrid... # Verify input 5tt image run.command('5ttcheck 5tt.mif', False) # Get shell information shells = [ int(round(float(x))) for x in image.headerField('dwi.mif', 'shells').split() ] if len(shells) < 3: app.warn('Less than three b-value shells; response functions will not be applicable in resolving three tissues using MSMT-CSD algorithm') # Get lmax information (if provided) wm_lmax = [ ] if app.args.lmax: wm_lmax = [ int(x.strip()) for x in app.args.lmax.split(',') ] if not len(wm_lmax) == len(shells): app.error('Number of manually-defined lmax\'s (' + str(len(wm_lmax)) + ') does not match number of b-value shells (' + str(len(shells)) + ')') for l in wm_lmax: if l%2: app.error('Values for lmax must be even') if l<0: app.error('Values for lmax must be non-negative') run.command('dwi2tensor dwi.mif - -mask mask.mif | tensor2metric - -fa fa.mif -vector vector.mif') if not os.path.exists('dirs.mif'): run.function(shutil.copy, 'vector.mif', 'dirs.mif') run.command('mrtransform 5tt.mif 5tt_regrid.mif -template fa.mif -interp linear') # Basic tissue masks run.command('mrconvert 5tt_regrid.mif - -coord 3 2 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt mask.mif -mult wm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 0 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult gm_mask.mif') run.command('mrconvert 5tt_regrid.mif - -coord 3 3 -axes 0,1,2 | mrcalc - ' + str(app.args.pvf) + ' -gt fa.mif ' + str(app.args.fa) + ' -lt -mult mask.mif -mult csf_mask.mif') # Revise WM mask to only include single-fibre voxels app.console('Calling dwi2response recursively to select WM single-fibre voxels using \'' + app.args.wm_algo + '\' algorithm') recursive_cleanup_option='' if not app._cleanup: recursive_cleanup_option = ' -nocleanup' run.command('dwi2response ' + app.args.wm_algo + ' dwi.mif wm_ss_response.txt -mask wm_mask.mif -voxels wm_sf_mask.mif -tempdir ' + app._tempDir + recursive_cleanup_option) # Check for empty masks wm_voxels = int(image.statistic('wm_sf_mask.mif', 'count', 'wm_sf_mask.mif')) gm_voxels = int(image.statistic('gm_mask.mif', 'count', 'gm_mask.mif')) csf_voxels = int(image.statistic('csf_mask.mif', 'count', 'csf_mask.mif')) empty_masks = [ ] if not wm_voxels: empty_masks.append('WM') if not gm_voxels: empty_masks.append('GM') if not csf_voxels: empty_masks.append('CSF') if empty_masks: message = ','.join(empty_masks) message += ' tissue mask' if len(empty_masks) > 1: message += 's' message += ' empty; cannot estimate response function' if len(empty_masks) > 1: message += 's' app.error(message) # For each of the three tissues, generate a multi-shell response bvalues_option = ' -shell ' + ','.join(map(str,shells)) sfwm_lmax_option = '' if wm_lmax: sfwm_lmax_option = ' -lmax ' + ','.join(map(str,wm_lmax)) run.command('amp2response dwi.mif wm_sf_mask.mif dirs.mif wm.txt' + bvalues_option + sfwm_lmax_option) run.command('amp2response dwi.mif gm_mask.mif dirs.mif gm.txt' + bvalues_option + ' -isotropic') run.command('amp2response dwi.mif csf_mask.mif dirs.mif csf.txt' + bvalues_option + ' -isotropic') run.function(shutil.copyfile, 'wm.txt', path.fromUser(app.args.out_wm, False)) run.function(shutil.copyfile, 'gm.txt', path.fromUser(app.args.out_gm, False)) run.function(shutil.copyfile, 'csf.txt', path.fromUser(app.args.out_csf, False)) # Generate output 4D binary image with voxel selections; RGB as in MSMT-CSD paper run.command('mrcat csf_mask.mif gm_mask.mif wm_sf_mask.mif voxels.mif -axis 3')