if __name__ == '__main__': from cv2 import imwrite from os.path import join as pjoin from os.path import basename as pbase from docopt import docopt from mscr.util import load_gray, imshow, AddSuffix, MyKNN from mscr.bovw import BoVW from mscr.blocks import RandBlockIter from mscr.blockVote import Vote, BlockVote, Votes2Img from mscr.grid import Grid, GridClassifier imfile, model, nblock, nneigh, display, save = parse_args() img = load_gray(imfile) print '#------------------' print imfile # random block voting bvw = BoVW() bvw.load(model) rbv = BlockVote( Vote(bvw), RandBlockIter(nblock, pdiv, sdiv, md, Md)) votes = rbv.run(img) if display: rbv.show() # corase segmentation
if __name__ == '__main__': from cv2 import imwrite from os.path import join as pjoin from os.path import basename as pbase from docopt import docopt from mscr.util import load_gray, imshow, AddSuffix, MyKNN from mscr.bovw import BoVW from mscr.blocks import RandBlockIter from mscr.blockVote import Vote, BlockVote, Votes2Img from mscr.grid import Grid, GridClassifier imfile, model, nblock, nneigh, display, save = parse_args() img = load_gray(imfile) print '#------------------' print imfile # random block voting bvw = BoVW() bvw.load(model) rbv = BlockVote(Vote(bvw), RandBlockIter(nblock, pdiv, sdiv, md, Md)) votes = rbv.run(img) if display: rbv.show() # corase segmentation coarse = Votes2Img(img.shape[:2]).run(votes)
return imgf, model, w, h, nn, display, save if __name__ == '__main__': from cv2 import imwrite from docopt import docopt from os.path import join as pjoin from os.path import basename as pbase from mscr.util import load_gray, MyKNN, imshow, AddSuffix from mscr.bovw import BoVW from mscr.blocks import TrivialBlockIter from mscr.blockVote import Vote, BlockVote, Votes2Img from mscr.grid import Grid, GridClassifier imgf, model, w, h, nn, display, save = parse_args() img = load_gray(imgf) print '#-----------------------' print imgf bvw = BoVW() bvw.load(model) ubv = BlockVote(Vote(bvw), TrivialBlockIter(w, h)) votes = ubv.run(img) coarse = Votes2Img(img.shape[:2]).run(votes) grid = GridClassifier(MyKNN(labels, nn=nn), Grid(microsize)) grid.run(img, coarse) grid.finalize()